9. ADVANCED MODELING: THERMOELECTRICITY

Thermoelectric and Thermomagnetic Phenomena

Heat flux:

Electrical filed intensity:

 $-\nabla V = \rho \mathbf{J} + S \nabla T + R \mathbf{B} \times \mathbf{J} + N \mathbf{B} \times \nabla T$ Ohm Seebeck Hall Nernst

Application areas:

- aerospace industry
- semiconductor industry
- electronics
- renewable energy sources
- bioengineering

Thermoelectric Effect

- Thermoelectric effect: Direct conversion of temperature difference to electric voltage or Direct conversion of electric voltage to temperature difference
- Historically, thermoelectric effect is known under three different names, reflecting its discovery in experiments by Seebeck, Peltier, and Thomson
- Seebeck effect: conversion of temperature differences into electricity
- Peltier effect: conversion of electricity to temperature differences
- Thomson effect: heat production by product of current density and temperature gradients
 - Joule heating is an irreversible phenomena
 - Thermoelectric effect is in principle reversible

Thermodynamics of Thermoelectric Effect

Thomson relations:

$$P = ST$$
$$\mu = T \frac{dS}{dT}$$

P: Peltier coefficient, $\lceil V \rceil$

S: Seebeck coefficient,
$$\lfloor V/K \rfloor$$

 μ : Thomson coefficient, $\left\lceil V/K \right\rceil$

T: temperature, $\lceil K \rceil$

Heat flux: $\mathbf{q} = -k\nabla T + P\mathbf{J}$

Electric current density: $\mathbf{J} = -\sigma \nabla V - \sigma S \nabla T$

Thermoelectricity Conservation Laws

Energy balance:

$$\rho C \frac{\partial T}{\partial t} + \nabla \cdot \mathbf{q} = Q \qquad \mathbf{q} = -k\nabla T + \mathbf{PJ}$$

Current balance (continuity):

$$\nabla \cdot \mathbf{J} = 0 \qquad \mathbf{J} = -\sigma \nabla V - \sigma S \nabla T$$

These terms are not implemented in Comsol interfaces

Electric potential: $\mathbf{E} = -\nabla V_{\odot}$

Weak contribution features can be used to account for missing terms

Joule heating: $Q = \mathbf{J} \cdot \mathbf{E}$

Energy Balance Weak Formulation

• Multiply energy balance equation by test function T_{test} and integrate over computational domain Ω :

$$\int_{\Omega} \rho C \frac{\partial T}{\partial t} T_{test} d\Omega + \int_{\Omega} (\nabla \cdot \mathbf{q}) T_{test} d\Omega = \int_{\Omega} Q T_{test} d\Omega$$

• Use vector identity $\nabla \cdot (T_{test} \mathbf{q}) = \mathbf{q} \cdot \nabla T_{test} + T_{test} \nabla \cdot \mathbf{q}$ to write equation as:

$$\int_{\Omega} \rho C \frac{\partial T}{\partial t} T_{test} d\Omega + \int_{\Omega} \nabla \cdot (T_{test} \mathbf{q}) d\Omega - \int_{\Omega} \mathbf{q} \cdot \nabla T_{test} d\Omega = \int_{\Omega} Q T_{test} d\Omega$$

• Use Gauss theorem $\int_{\Omega} \nabla \cdot (T_{test} \mathbf{q}) d\Omega = \int_{\partial \Omega} T_{test} \mathbf{q} \cdot \mathbf{n} \partial \Omega$:

$$0 = \int_{\Omega} \left[-\rho C \frac{\partial T}{\partial t} T_{test} + \mathbf{q} \cdot \nabla T_{test} + Q T_{test} \right] d\Omega - \int_{\partial \Omega} (\mathbf{q} \cdot \mathbf{n}) T_{test} \partial \Omega$$

Comsol convection is to collect all terms on the right side

Energy Balance Weak Formulation (cont'd)

• Use energy flux $\mathbf{q} = -k\nabla T + P\mathbf{J}$:

• The only term not implemented in Comsol is Peltier weak contribution:

$$weak_{P} = (P\mathbf{J}) \cdot \nabla T_{test} = PJ_{\chi} \frac{\partial T_{test}}{\partial \chi} + PJ_{\chi} \frac{\partial T_{test}}{\partial y} + PJ_{\chi} \frac{\partial T_{test}}{\partial \chi} = P * ec.Jx * test(Tx) + P * ec.Jy * test(Ty) + P * ec.Jz * test(Tz)$$

Comsol notation for test function: $T_{test} = test(T)$

✓ Comsol notation for partial derivatives: $\frac{\partial T}{\partial x} = Tx$, $\frac{\partial T}{\partial y} = Ty$, $\frac{\partial T}{\partial z} = Tz$

Current Balance Weak Formulation

• Multiply current balance equation by test function V_{test} and integrate over computational domain Ω :

$$\int_{\Omega} (\nabla \cdot \mathbf{J}) V_{test} d\Omega = 0$$

• Use vector identity and Gauss theorem to write equation as:

$$0 = \int_{\Omega} \left[\mathbf{J} \cdot \nabla V_{test} \right] d\Omega - \int_{\partial \Omega} \left(\mathbf{J} \cdot \mathbf{n} \right) V_{test} \partial \Omega$$

• Use current density $\mathbf{J} = -\sigma \nabla V - S\sigma \nabla T$:

The only term not implemented in Comsol is Seebeck weak contribution:

$$weak_{S} = -(\sigma S \nabla T) \cdot \nabla V_{tes}$$

Thermoelectric Cell (TEC)

Thermoelectric Cell: Model Example

© AltaSim Technologies, LLC. All rights reserved.

REALIZING TOMORROW'S TECHNOLOGY

Thermoelectric Circuit

 A thermoelectric circuit composed of materials of different Seebeck coefficient: p-doped and n-doped semiconductors

The Seebeck circuit configured as a thermoelectric cooler

The Seebeck circuit configured as a thermoelectric generator

Jean Charles Athanase Peltier (1785-1845)

PELTIER EFFECT IMPLEMENTATION

Peltier Effect Example Model

Bismuth Telluride properties:		
Seebeck Coefficient, [V/K]	p: n:	$S = 200 \cdot 10^{-6}$ $S = -200 \cdot 10^{-6}$
Electric conductivity, [S/m]		$\sigma = 1.1 \cdot 10^5$
Thermal conductivity, [W/m/K]		<i>k</i> =1.6
Heat capacity, [J/kg/K]		<i>C</i> =154.4
Density, [kg/m ³]		$\rho \!=\! 7740$

Model objectives:

- Implement Peltier effect as a weak contribution to energy balance
- Apply appropriate boundary conditions to demonstrate conversion of electricity to temperature differences

Peltier Effect: Model Wizard

🔨 Model Wizard 1) Space dimension: Select Space Dimension O 3D 2D axisymmetric 2D Heat Transfer in Solids 1 2) Physics selection: Selected physics Thermal Insulation 1 Heat Transfer in Solids (ht) Initial Values 1 🚬 Electric Currents (ec) Current Conservation 1 Electric Insulation 1 Initial Values 1 Select Study Type Study type: 1) Studies Preset Studies for Selected Physics 🔤 Small-Signal Analysis, Frequency Domain 68 Stationary 👠 Time Dependent 14 © AltaSim Technologies, LLC. All rights reserved.

Peltier Effect: Global Parameters & Geometry

Define Global Parameters:

Build geometry:

Name	Expression	Description
а	0.7[mm]	pellet width
b	1[mm]	pellet height
с	0.2[mm]	electrode thickness
g	0.3[mm]	gap between pellets
S_Bi2Te3	200e-6[V/K]	Seebeck coefficient
sig_Bi2Te3	1.1e5[S/m]	electric conductivity
k_Bi2Te3	1.6[W/(m*K)]	thermal conductivity
Cp_Bi2Te3	154.4[J/(kg*K)]	specific heat capacity
rho_Bi2Te3	7740[kg/m^3]	density
V0	1[V]	applied voltage
то	20[degC]	reference temperature

Materials

1 Define copper material:

Define bismuth telluride material:

🗢 🌐 Materials

- Copper (mat1)
- Material 2:Bismuth Telluride (mat2)

Material Contents

	Property	Name	Value
~	Thermal conductivity	k	k_Bi2Te3
~	Density	rho	rho_Bi2Te3
~	Heat capacity at constant	Ср	Cp_Bi2Te3
~	Electrical conductivity	sigma	sig_Bi2Te3
~	Relative permittivity	epsilonr	1

Materials (cont'd)

 Define Seebeck and Peltier coefficients as domain variables "S" and "P" to make it available for Weak Contribution node

Materials (cont'd)

© AltaSim Technologies, LLC. All rights reserved.

ŧ

ŧ

ŧ

\$

Manual

Unit

V/K

Manual

Unit

V/K

v

v

Description

Seebeck coefficient

Peltier coefficient

Description

Seebeck coefficient

Peltier coefficient

Expression

S_Bi2Te3*T

Expression

-S_Bi2Te3

-S_Bi2Te3*T

Name

S

Р

S Bi2Te3

Peltier Weak Contribution

1

In the Model Builder, click Show button and then select Equation View and **Advanced Physics Option** to display these options under physics interface nodes

Add Weak Contribution domain node under Heat transfer in Solids (ht) interface

Peltier Weak Contribution (cont'd)

Select all domains and enter Peltier effect weak contribution in the **Weak expression** edit window

Check **Equation View** under **Heat Transfer in Solids 1** node to see the implementation of the rest weak terms in the energy balance equation

$$weak_{P} = (P\mathbf{J}) \cdot \nabla T_{test} = PJ_{\chi} \frac{\partial T_{test}}{\partial \chi} + PJ_{\chi} \frac{\partial T_{test}}{\partial y} =$$

= P * ec.Jx * test(Tx) + P * ec.Jy * test(Ty)

Peltier Effect: Thermal BC

• Apply fixed temperature **TO** at all exterior boundaries

Peltier Effect: Electrical BC

Apply ground potential at the left boundary of bottom electrode

▽ 🚴 Electric Currents (ec)	Ground	
🕨 🕒 Current Conservation 1		
🕨 🗄 Electric Insulation 1	Boundary Selection	
 Initial Values 1 Ground 1 	Selection: Manual 🗘	

Apply fixed electrical potential V0 at the right boundary of bottom electrode

© AI

	🕀 Electric Potential		
▽ 🚴 Electric Currents (ec)			
👂 造 Current Conservation 1	Boundary Selection		
👂 🗄 Electric Insulation 1	Journally Sciection		
🕨 🕒 Initial Values 1	Selection: Manual 🗘		
👂 🕀 Ground 1	20		
👂 🕀 Electric Potential 1			<u>→{</u> 1)
X Notes	- Electric Potential		
	Electric potential:		
PALIZING TOMORROW'S TECHNOLOGY	Vo VO V	2	22
aSim Technologies, LLC. All rights reserved			

Peltier Effect: Results

Thomas Johann Seebeck (1770-1831)

SEEBECK EFFECT IMPLEMENTATION

Seebeck Effect Example Model

Model objectives:

- Implement Seebeck effect as a weak contribution to current balance
- Apply appropriate boundary conditions to demonstrate conversion of temperature differences into electricity

- Open previously created model "Peltier_effect.mph"
- This model will be modified to add Seebeck effect
- Remove previously imposed thermal and electrical boundary conditions
- Save the model as "Seebeck_effect.mph"

Seebeck Weak Contribution

(1)

Add Weak Contribution domain node under Electric Currents (ec) interface and select all domains

Enter Seebeck effect weak contribution in the Weak expression edit window

Weak Contribution

Weak expression:

-S*(ec.sigmaxx*Tx+ec.sigmaxy*Ty)*test(Vx)-S*(ec.sigmayx*Tx+ec.sigmayy*Ty)*test(Vy)

$$weak_{S} = -\left(\sigma \cdot S \nabla T\right) \cdot \nabla V_{test}$$
$$= -S\left(\sigma_{xx}\frac{\partial T}{\partial x} + \sigma_{xy}\frac{\partial T}{\partial y}\right) \frac{\partial V_{test}}{\partial x} - S\left(\sigma_{yx}\frac{\partial T}{\partial x} + \sigma_{yy}\frac{\partial T}{\partial y}\right) \frac{\partial V_{test}}{\partial y}$$

Seebeck Effect: Thermal BC

1 Apply fixed temperature T0 at bottom electrodes

	Boundary Selection
▽ 🝋 Heat Transfer in Solids <i>(ht)</i>	Selection: Manual
🕨 造 Heat Transfer in Solids 1	
🕨 🗁 Thermal Insulation 1	
Initial Values 1	13
Weak Contribution 1: Peltier effect	▼ Temperature
🕨 🕀 Temperature 1	Temperature:
2 Apply fixed temperature 80°C a	top electrode
▽ 🝋 Heat Transfer in Solids <i>(ht)</i>	Boundary Selection
🕨 🕒 Heat Transfer in Solids 1	
🕨 🖶 Thermal Insulation 1	Selection: Manual
Initial Values 1	8

к

Temperature

Temperature:

7₀ 80[degC]

- Initial Values 1
- Weak Contribution 1: Peltier effect
- 👂 🕀 Temperature 1
- 👂 🕀 Temperature 2

Seebeck Effect: Electrical BC

• Apply ground reference potential at the right boundary of bottom electrode

Seebeck Effect: Results

• Seebeck effect: conversion of temperature differences into electricity

