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The design of corrugated panels has wide application in engineering. For example corrugated panels are
often used in roof structures in civil engineering. More recently corrugated laminates have been sug-
gested as a good solution for morphing aircraft skins due to their extremely anisotropic behaviour. The
optimal design of these structures requires simple models of the panels or skins that may be incorporated
into multi-disciplinary system models. Thus equivalent material models are required that retain the
dependence on the geometric parameters of the corrugated skins or panels. An homogenisation-based
analytical model, which could be used for any corrugation shape, is suggested in this paper. This method
is based on a simplified geometry for a unit-cell and the stiffness properties of original sheet. This paper
outlines such a modelling strategy, gives explicit expressions to calculate the equivalent material prop-
erties, and demonstrates the performance of the approach using two popular corrugation shapes.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last two decades, homogenisation-based modelling
techniques have attracted considerable attention within the com-
putational mechanics community (Michel et al., 1999, 2002; Pel-
legrino et al., 1999; Suquet, 1993; Saavedra Flores and de Souza
Neto, 2010). The importance and increasing interest in this area
stems mainly from the potential ability of these techniques to cap-
ture the effective response of complex microstructural configura-
tions under a wide range of conditions. Successful use of such
methodologies has been reported, for example, in the context of
constitutive modelling of materials (Miehe et al., 1999; Wellmann
and Wriggers, 2008; Saavedra Flores et al., 2011), topology optimi-
sation (Allaire, 2001; Bendsoe and Kikuchi, 1998) and waves prop-
agation in periodic media (Ruzzene and Baz, 2000; Andrianov et al.,
2008; Gonella and Ruzzene, 2008).

Many components in engineering structures incorporate corru-
gated panels, particularly in civil, marine and aerospace engineer-
ing. The response of these structures has to be estimated to ensure
their performance is satisfactory. Often the loads are well distrib-
uted and only the overall deflections are required. If the dimen-
sions of the whole corrugated panel are much larger than the
period of the corrugations, then a suitable approach is the use of
homogenisation techniques, in which the corrugated panel is re-
placed by an orthotropic plate with equivalent stiffness properties
(Yokozeki et al., 2006; Thill et al., 2010a; Xia and Friswell, 2011).
ll rights reserved.
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riswell).
Briassoulis (1986) and McFarland (1967) investigated the equiv-
alent flexural rigidity of plates with sine-wave and rectangular cor-
rugations, respectively. Samanta and Mukhopadhyay (1999)
performed the static and dynamic analyses of trapezoidal corru-
gated sheets by considering both extensional and flexural rigidities.
Yokozeki et al. (2006) investigated the properties of corrugated
laminates made from carbon epoxy composites both by experiment
and analysis. Peng et al. (2007) investigated the equivalent elastic
properties of sinusoidal and trapezoidal corrugated plates by means
of a mesh-free Galerkin method. Liew et al. (2007) used this method
for the geometrically nonlinear analysis of corrugated plates. Both
the equivalent flexural and extensional properties were employed
in the analyses. Thill et al. (2008b, 2010b) compared the homoge-
nised plate properties for candidate morphing aircraft skins to
experimental results by adopting the same procedure proposed
by Samanta and Mukhopadhyay (1999). Kress and Winkler (2010)
and Winkler and Kress (2010) derived accurate analytical expres-
sions of equivalent orthotropic plate for circular corrugations. Re-
cently, a two-dimensional finite element was derived by Kress
and Winkler (2011) for the analysis of corrugated laminates.

Recently morphing aircraft have attracted considerable interest
(Barbarino et al., 2011). Mechanisms such as deployable flaps pro-
vide the current standard of adaptive airfoil geometry, although
this solution places limitations on manoeuvrability and efficiency,
and produces a design that is non-optimal in many flight regimes.
Although significant efforts have been expended in research into
adaptive structures and morphing aircraft, examples of practical
solutions are still very few. One important issue that remains to
be solved is the design of the suitable skins (Thill et al., 2008a).

http://dx.doi.org/10.1016/j.ijsolstr.2012.02.023
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Corrugated laminates offer a solution due to their extremely
anisotropic behaviour: compliance in the chordwise (corrugation)
direction that allows shape changes and increases in surface area;
stiffness in the spanwise (transverse to the corrugation) direction
enables the aerodynamic and inertial loads to be carried. Currently
the design of the morphing wing and the specification of the skin
are performed independently. This approach is adequate for simple
wing geometries (such as morphing trailing edges), but inadequate
for more complex three-dimensional geometries (such as the morp-
hing winglet (Smith et al., 2010)).

This paper investigates equivalent material models that reduce
the size of the finite element models, so that the panel or skin may
be incorporated into the system level model. The skin model must
retain dependence on the geometric parameters of the corruga-
tions so that it may be used for optimisation at the design stage.
Furthermore the method must allow for the geometry of arbitrary
corrugations to be modelled and analysed easily. This paper pro-
poses an homogenisation method that is more accurate and versa-
tile than existing methods. Both the in-plane and the out-of-plane
local deformations of the sheet material are considered. The
homogenisation-based analytical model is obtained from a simpli-
fied geometry for a unit-cell and the validity of this model is com-
pared to a detailed finite element analysis. The proposed method is
easily applied to any corrugation geometry, through the evaluation
of two integrals based solely on the geometry; often these integrals
may be evaluated analytically but in some instances might have to
be calculated numerically. The approach is demonstrated on two
common geometries, namely trapezoidal and round corrugations;
other corrugation shapes are easily analysed.

2. Modelling corrugated panels

The panel is assumed to have periodic corrugations in one
direction only. Our objective is to approximate the response of
the corrugated panel using an orthotropic flat plate whose proper-
ties are selected to be equivalent to those of the original panel. The
same boundary conditions are applied to the equivalent orthotro-
pic plate and to the original corrugated panel, and the homoge-
nised properties are estimated by equating the strain energies
and the reaction forces and moments from the two models.

2.1. Coordinate systems

The corrugated panels are generated from a periodic shape in
the xz plane that is extruded in the y direction to produce a panel.
x

z

y

x

z

θ

sn

Fig. 1. Definition of the coordinate systems.
The geometry of a corrugation unit is shown in Fig. 1. There are two
coordinate systems that must be defined to analyse the panel,
namely the global xyz Cartesian coordinate system as shown in
Fig. 1, and the local coordinate system on the sheet forming the
corrugation. The local coordinate system is defined by the tangent
direction to the sheet in the xz plane, defined as the s direction, and
the normal to the sheet in the xz plane, defined as the n direction.
Both of these directions are shown in Fig. 1. We define the position
of a point on the sheet, r � rðs; yÞ, in the global coordinate system
as

rðs; yÞ ¼ xðsÞiþ yjþ zðsÞk; ð1Þ

where i; j and k denote unit vectors in the x; y and z directions,
respectively, and s defines the position along the corrugation. The
unit vectors in the local coordinate system, et and en, tangent and
normal to the corrugation in the xz plane, are defined as

et ¼
dr
ds
¼ cos hiþ sin hk ð2Þ

and

en ¼ sin hi� cos hk; ð3Þ

where cos h denotes the direction cosine of the tangential direction,
given by

cos h ¼ dx
ds
; sin h ¼ dz

ds
: ð4Þ

It is assumed that the principal directions of the orthotropic sheet
material forming the corrugations coincide with the coordinates y
and s of the plate, and as shall be seen in the following, this assump-
tion will allow us to set most of the terms in the stiffness matrices
to zero. Thus, the results obtained here should be restricted to this
particular case of orthotropy. However, the consideration of differ-
ent directions of material is straightforward and if required may be
included in the present methodology.
2.2. Equivalent orthotropic plate model

The corrugated panel is approximated by an orthotropic classi-
cal Kirchhoff plate, by ignoring the coupling stiffness matrix B. The
constitutive equation of the equivalent orthotropic plate is

Nx

Ny

Nxy

Mx

My

Mxy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

A11 A12 0 0 0 0
A12 A22 0 0 0 0
0 0 A66 0 0 0
0 0 0 D11 D12 0
0 0 0 D12 D22 0
0 0 0 0 0 D66

2
6666666664

3
7777777775

��x

��y

�cxy

�jx

�jy

�jxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; ð5Þ

where ��x; ��y; �cxy; �jx; �jy; �jxy denote the strain components and curva-
ture components of the mid-plane of the orthotropic plate model,
and Nx;Ny;Nxy;Mx;My;Mxy denote the force and moment compo-
nents. Eq. (5) may be written in a compact but equivalent form as

N
M

( )
¼ A 0

0 D

" #
��
�j

� �
; ð6Þ

where the definition of the vectors and matrices is obvious by com-
paring Eqs. (5) and (6).

The objective is to derive closed form approximate expressions
of the Aij and Dij terms in Eq. (5) as a function of the corrugation
geometry.
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2.3. Evaluation of the stiffness properties

As the corrugated panel is formed by repeating the basic unit
cell periodically, the stiffness properties of the equivalent plate
may be determined from a basic unit cell, called a Representative
Volume Element (RVE). In the local curvilinear coordinates
ðs;n; yÞ, we have,

Ns
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Nsy

Ms

My

Msy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

A11 A12 0 0 0 0
A12 A22 0 0 0 0
0 0 A66 0 0 0
0 0 0 D11 D12 0
0 0 0 D12 D22 0
0 0 0 0 0 D66

2
666666664

3
777777775

�s
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jsy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð7Þ

The homogenisation approach requires the estimation of the inter-
nal force distributions under six generalised strain boundary condi-

tions for
��
�j

� �
which are shown in Table 1. Either the Equivalent

Energy Method or the Equivalent Force Method may be used to esti-
mate the equivalent stiffnesses of the corrugated panels; the energy
approach is generally simpler, but is only able to estimate the
diagonal terms in Eq. (5).

For the Equivalent Energy Method, the strain energy of the
original corrugated panel is calculated as

U ¼ 1
2

ZZ
N>SNdsdy; ð8Þ

where N ¼ ½Ns;Ny;Nsy;Ms;My;Msy�T . The flexibility matrix of the ori-
ginal plain composite sheet material, S, is the inverse of the stiffness
matrix, K (the matrix in Eq. (7)), and given by

S ¼ K�1 ¼

S11 S12 0 0 0 0
S12 S22 0 0 0 0
0 0 S33 0 0 0
0 0 0 S44 S45 0
0 0 0 S45 S55 0
0 0 0 0 0 S66

2
66666664

3
77777775

ð9Þ

where,

S11 ¼
A22

A11A22 � A2
12

; S12 ¼
�A12

A11A22 � A2
12

;

S22 ¼
A11

A11A22 � A2
12

; S33 ¼
1

A66
;

S44 ¼
D22

D11D22 � D2
12

; S45 ¼
�D12

D11D22 � D2
12

;

S55 ¼
D11

D11D22 � D2
12

; S66 ¼
1

D66
:

The integration in Eq. (8) is over a unit cell whose length corre-
sponds to one period of the corrugation and the width is b.
Table 1
Boundary conditions for the equivalent orthotropic plate, and the corresponding
stiffness expressions.

Boundary conditions
��
�j

� � Equivalent energy
method

Equivalent force
method

½1;0;0;0;0;0�T A11 ¼ 2U=ð2cbÞ A11 ¼ Nx ; A21 ¼ Ny

½0;1;0;0;0;0�T A22 ¼ 2U=ð2cbÞ A22 ¼ Ny; A12 ¼ Nx

½0;0;1;0;0;0�T A66 ¼ 2U=ð2cbÞ A66 ¼ Nxy

½0;0;0;1;0;0�T D11 ¼ 2U=ð2cbÞ D11 ¼ Mx; D21 ¼ My

½0;0;0;0;1;0�T D22 ¼ 2U=ð2cbÞ D22 ¼ My; D21 ¼ Mx

½0;0;0;0;0;1�T D66 ¼ 2U=ð2cbÞ D66 ¼ Mxy
The strain energy, U, must equal the strain energy of the equiv-
alent orthotropic plate, U. Hence

U ¼ U ¼ 1
2
ð2cÞb

��
�j

� �T A 0
0 D

" #
��
�j

� �
; ð10Þ

where 2c is the period of the corrugation and b is the width of the
unit cell. The stiffness components are then estimated by applying
different strain boundary conditions in turn. The equivalent stiff-
ness component expressions and corresponding boundary condi-
tions are shown in Table 1.

The Equivalent Force Method equates the equivalent internal
forces and moments to the average internal forces and moments
of the original corrugated RVE for the six different strain boundary
conditions shown in Table 1. Different stiffness components are
obtained from an appropriate choice of equivalent internal force
and prescribed strain boundary condition. The details are also
shown in Table 1.

The following subsections explain how each of stiffness compo-
nents is calculated by using the six strain boundary conditions. The
development for the first boundary condition is explained in detail;
the development for the other boundary conditions is similar and
hence only a brief summary is given.

2.3.1. Case 1: ½��T ; �jT � ¼ ½1; 0; 0; 0; 0; 0�
From Table 1, we have Nx ¼ A11. The symmetry of the corruga-

tions and the boundary conditions require that most of the local
strains are zero; thus �y ¼ 0; csy ¼ 0;jy ¼ 0 and jsy ¼ 0. Since the
only strain is in the x direction, the internal force in the x direction
for the corrugated sheet must be constant, and hence the equilib-
rium of internal forces in the local coordinate system implies that

Ns ¼ Nx
dx
ds
: ð11Þ

The zero strain in the y direction in the local coordinates requires
that

Ny ¼
A12

A11
; Ns ¼

A12

A11
; Nx

dx
ds
: ð12Þ

Comparing moments between the local and global coordinates sys-
tems gives

Ms ¼ Nxz ð13Þ

and zero local curvature gives

My ¼
D12

D11
; Ms ¼

D12

D11
Nxz: ð14Þ

Thus the strain energy of the RVE is

U¼1
2

Z Z
A

N2
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� �
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0

Z
s
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x
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� �2
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þz2 S44þ2
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D11
S45þ

D2
12

D2
11

S55

 !#
dsdy

¼1
2

bA2
11

Z
s

dx
ds

� �2

S11þ2
A12

A11
S12þ

A2
12

A2
11

S22

 !"

þz2 S44þ2
D12

D11
S45þ

D2
12

D2
11

S55

 !#
ds: ð15Þ

Using the definitions in Eq. (9),

S11 þ 2
A12

A11
S12 þ

A2
12

A2
11

S22

 !
¼ 1

A11
ð16Þ
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and

S44 þ 2
D12

D11
S45 þ

D2
12

D2
11

S55

 !
¼ 1

D11
: ð17Þ

Hence

U ¼ 1
2

bA2
11

Z
s

dx
ds

� �2 1
A11
þ z2 1

D11

" #
ds ¼ 1

2
bA2

11
I1

A11
þ I2

D11

� 	
; ð18Þ

where

I1 ¼
Z

s

dx
ds

� �2

ds and I2 ¼
Z

s
z2ds: ð19Þ

The strain energy of the equivalent panel, U, is

U ¼ 1
2
ð2cÞbA11 ¼ bcA11: ð20Þ

Since U ¼ U, we have

A11 ¼
2c

I1
A11
þ I2

D11

: ð21Þ

Note that the geometry of the corrugations only affect I1 and I2 since
ðxðsÞ; zðsÞÞ defines the shape of the corrugations.

The equivalent internal force, Ny, is obtained as the average lo-
cal force, Ny, over a corrugation. Thus

Ny ¼
1
2c

Z
s

Nyds ¼ 1
2c

Z
s

A12

A11
Nx

dx
ds

ds

¼ 1
2c

A12

A11
A11

Z 2c

0
dx ¼ A12

A11
A11: ð22Þ

The coupling stiffness components A21 and A12 are then

A12 ¼ A21 ¼ Ny ¼
A12

A11
A11 ð23Þ

and the Poisson’s ratio of the equivalent plate is identical to that of
the sheet material used to form the corrugations.

2.3.2. Case 2: ½��T ; �jT � ¼ ½0; 1; 0; 0; 0; 0�
In this case, Nx ¼ A12 and Ny ¼ A22. The local strains are given by

�y ¼ 1; csy ¼ 0;jy ¼ 0 and jsy ¼ 0. Equating forces in the local coor-
dinate system gives

Ns ¼ Nx
dx
ds
¼ A12

dx
ds
: ð24Þ

From Eq. (7), Ns ¼ A11�s þ A12�y, and hence

�s ¼
1

A11
A12

dx
ds
� A12

� �
: ð25Þ

From the defintion of Ny in Eq. (7), and substituting for �s from Eq.
(25), gives

Ny ¼ A12�s þ A22 ¼
A12A12

A11

dx
ds
þ A22 �

A2
12

A11

 !
: ð26Þ

The average internal force in the global frame, Ny, is then

Ny ¼
1
2c

Z
s

Ny ds

¼ 1
2c

Z
s

A12A12

A11

dx
ds

 !
dsþ

Z
s

A11A22 � A2
12

A11
ds

" #

¼ A12A12

A11
þ l

c
A11A22 � A2

12

A11
; ð27Þ
where l is the developed length of one half of a repeating corruga-
tion. The constant A22 is then obtained as

A22 ¼ Ny ¼
A12A12

A11
þ l

c
A11A22 � A2

12

A11
: ð28Þ

The effect of different corrugation geometries only affects A22

through the length l.

2.3.3. Case 3: ��T ; �jT

 �

¼ 0; 0; 1; 0; 0; 0½ �
In this case, we have Nsy ¼ Nxy ¼ A66. The strain energy of the

RVE is,

U ¼ 1
2

ZZ
A
N2

syS33dsdy ¼ 1
2

bð2lÞA2
66S33: ð29Þ

Equating this strain energy to the strain energy for the equivalent
plate model gives

U ¼ U ¼ 1
2

bð2cÞA66 ¼ bcA66: ð30Þ

Thus,

A66 ¼
c

lS33
¼ c

l
A66: ð31Þ

The effect of different corrugation geometries only affects A66

through the length l.

2.3.4. Case 4: ��T ; �jT

 �

¼ 0; 0; 0; 1; 0; 0½ �
In this case, Mx ¼ D11 and My ¼ D21. The local strains are given

by �s ¼ 0; �y ¼ 0; csy ¼ 0;jy ¼ 0 and jsy ¼ 0. Thus,

Ms ¼ Mx ð32Þ
and

My ¼
D12

D11
Ms ¼

D12

D11
Mx: ð33Þ

The strain energy of the RVE is

U ¼ 1
2

ZZ
A

M2
s S44 þ 2MsMyS45 þM2

yS55

� �
dsdy

¼ 1
2

Z b

0

Z
s

M2
x S44 þ 2

D12

D11
S45 þ

D2
12

D2
11

S55

 !
dsdy

¼ 1
2

bð2lÞD2
11 S44 þ 2

D12

D11
S45 þ

D2
12

D2
11

S55

 !
¼ 1

2
bð2lÞD2

11
1

D11
: ð34Þ

The strain energy of the equivalent plate, U, is

U ¼ 1
2

D11bð2cÞ: ð35Þ

Equating the strain energies, U ¼ U, we have,

D11 ¼
c
l

D11: ð36Þ

The coupling bending stiffness components, D12 and D21, are calcu-
lated as follows,

D12 ¼ D21 ¼ My ¼
1
2c

Z
s

My
dx
ds

ds

¼ 1
2c

Z
s

D12

D11
D11

dx
ds

ds

¼ 1
2c

D12

D11
D11

Z 2c

0
dx ¼ D12

D11
D11: ð37Þ
2.3.5. Case 5: ��T ; �jT

 �

¼ 0; 0; 0; 0; 1; 0½ �
In this case, the local strains are given by �s ¼ 0; �y ¼ z; csy ¼ 0;

js ¼ 0;js ¼ 0;jy ¼ dx=ds;jsy ¼ 0. The strain energy of the RVE is
then



Table 2
Stiffness properties for a general corrugation, with half period c and half length l.

Stiffness term Expression from proposed method

A11 2c
I1

A11
þ I2

D11

� 	
A12 A12

A11
A11

A22 A12A12

A11
þ l

c
A11A22 � A2

12

A11

A66
c
l

A66

D11
c
l

D11

D12 D12

D11
D11

D22 1
2c
½I2A22 þ I1D22�

D66 l
c

D66

where I1 ¼
R 2l

0
dx
ds

� �2

ds and I2 ¼
R 2l

0 z2ds.

Table 4
Stiffness properties for a round corrugation. Note that the corrugation half length is
l ¼ pRþ 2L and the half period is c ¼ 2R. The thickness of the corrugated sheet
material is t.

R

L
x

z

Stiffness Term Proposed Method Yokozeki et al. (2006)

A11 2c
I1

A11
þ I2

D11

� 	 4RD11

I2

A12 A12

A11
A11

A22 A12A12

A11
þ A11A22 � A2

12

A11

l
2R

l
2R

A22

A66 2R
A66

Table 3
Stiffness properties for a trapezoidal corrugation. Note that the corrugation half
length is l ¼ 2f

sin aþ c � 2f
tan a. The method of Samanta and Mukhopadhyay (1999)

assumes an isotropic sheet with thickness t, Young’s modulus E, and Poisson’s ratio m.

f

c
x

z

Stiffness Term Proposed Method Samanta and Mukhopadhyay
(1999)

A11 2c
I1

A11
þ I2

D11

� 	 2c
I2

Et3

12

A12 A12

A11
A11

mA11

A22 A12A12

A11
þ l

c
A11A22 � A2

12

A11

l
c

Et

A66
c
l

A66
c
l

Et
2ð1þ mÞ

D11
c
l

D11 c
l

Et3

12
D12 D12

D11
D11

0

D22 1
2c

I2A22 þ I1D22½ � Et
2c

I2

D66 l
c

D66
l
c

Et3

6ð1þ mÞ

where I1 ¼
4f cos a
3 sin a

þ 2c � 4f
tan a

, and I2 ¼
4f 3

3 sin a
þ 2f 2 c � 2f

tan a

� �
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U ¼ 1
2

ZZ
A

A22z2 þ D22
dx
ds

� �2
" #

dsdy

¼ 1
2

b
Z

s
A22z2 þ D22

dx
ds

� �2
" #

ds: ð38Þ

The equivalent strain energy U is

U ¼ 1
2

bð2cÞD22: ð39Þ

Hence U ¼ U implies that

D22 ¼
1
2c

Z
s

A22z2 þ D22
dx
ds

� �2
" #

ds ¼ 1
2c

A22I2 þ D22I1½ �; ð40Þ

where the integrals I1 and I2 are given in Eq. (19).

2.3.6. Case 6: ½��T ; �jT � ¼ ½0; 0; 0; 0; 0; 1�
In this case, the local strains are �s ¼ 0; �y ¼ 0; csy ¼ 0;js ¼ 0;

js ¼ 0;jy ¼ 0;jsy ¼ 1. The strain energy of the RVE is then

U ¼ 1
2

ZZ
A
D66dsdy ¼ 1

2
bð2lÞD66: ð41Þ

The equivalent strain energy, U, is

U ¼ 1
2

bð2cÞD66: ð42Þ

Hence U ¼ U implies that

D66 ¼
l
c

D66: ð43Þ

l

D11 2R
l

D11
2R
l

D11

D12 D12

D11
D11

D22 1
2c

I2A22 þ I1D22½ � I2 þ ð3pRþ8LÞ
12 t2

h i
A22
4R

D66 l
2R

D66

where I1 ¼ pR, and I2 ¼
4L3

3
þ 2pL2Rþ 8LR2 þ pR3
2.3.7. Summary of stiffness terms
Table 2 summarises the stiffness terms for a general corrugation

defined by ðxðsÞ; zðsÞÞ. The constants that must be calculated for a
given corrugation geometry are the half period c, the corrugation
half length l, and the integrals I1 and I2.

3. Mechanical properties of typical corrugations

Using the method presented in Subsection 2.3, the stiffness
properties of two classical corrugation shapes are estimated.

Table 3 gives the results for a trapezoidal corrugation. The cor-
rugation half length is calculated by summing the lengths of the
sloping and horizontal sections and is given by l ¼ 2f

sinaþ c � 2f
tan a.

The integrals I1 and I2 are easily computed using the expressions
in Table 2, and are given in Table 3. The proposed method is com-
pared to that of Samanta and Mukhopadhyay (1999), who only
considered isotropic material for the original sheet.

Table 4 gives the stiffness results for a round corrugation and
are compared to the method of Yokozeki et al. (2006). The length
is easily calculated as l ¼ pRþ 2L. The integrals I1 and I2 are given
in Table 4.



Table 5
Stiffness properties for the example trapezoidal corrugation.

Proposed method Samanta and
Mukhopadhyay
(1999)

FEM Error (%) Proposed
method vs. FEM

A11 (MN/m) 4.052 4.150 4.051 0.012

A12 (MN/m) 1.216 1.245 1.215 0.008

A22 (MN/m) 161.332 176.888 163.910 1.572

A66 (MN/m) 42.489 42.489 42.797 0.721

D11 (Nm) 407.917 371.205 406.512 0.346

D12 (Nm) 122.375 0 121.954 0.349

D22 (kNm) 17.809 31.647 17.805 0.020

D66 (Nm) 208.032 208.032 207.96 0.035
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Fig. 3. Internal forces and

Fig. 2. The detailed finite element model for one period of a trapezoidal corrugated
panel.
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4. Numerical examples

The proposed equivalent stiffness properties are now compared
to results from the literature, and also to detailed finite element
models, to determine their effectiveness.

4.1. Trapezoidal corrugation

The first example is taken from Samanta and Mukhopadhyay
(1999), based on an isotropic sheet material. The following proper-
ties for the standard trapezoidal corrugation profile are used

E ¼ 21 GPa; m ¼ 0:3; b ¼ 1:016 m; c ¼ 0:0508 m;

f ¼ 0:0127 m; t ¼ 0:00635 m; a ¼ 45�:

The first stage is to determine the equivalent orthotropic plate
properties. Table 5 shows the comparison of the proposed method
with the orthotropic properties of Samanta and Mukhopadhyay
(1999). To verify these properties, a detailed finite element model
(FEM) for one period of the corrugation was constructed using
ANSYS (ANSYS, 2011). Fig. 2 shows the mesh of the finite element
model, which has 4131 nodes and 4000 SHELL63 elements. Bound-
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moments for case 1.
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Fig. 4. Internal forces and moments for case 5.

Fig. 5. A detailed finite element model for a panel constructed with trapezoidal
corrugations.
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Fig. 6. The displacement in the x–z and y–z planes for a panel constructed with
trapezoidal corrugations.
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ary conditions equivalent to those in Table 1 were applied to the fi-
nite element model, and the forces and moments at the boundaries
used to calculate the equivalent properties. Table 5 also shows the
finite element results and shows that the proposed method is very
accurate, and produces a superior equivalent model to that of Sa-
manta and Mukhopadhyay (1999).

The accuracy of the equivalent model is investigated further by
comparing the internal forces and moments for two typical cases,
namely case 1 and case 5, that are shown in Figs. 3 and 4. Clearly
the internal forces and moments given by the proposed method
are remarkably close to those given by the FEM. Thus our assump-
tions about the distribution of the internal forces and moments is
reasonable.

The accuracy of the equivalent model should also be verified for
a typical application. Here we consider a corrugated panel with 10
corrugation periods. The length of the corrugated panel in the x
direction varies according to the number of corrugations, n. In this
case, n ¼ 10 and hence a ¼ 2c � 10 ¼ 1:016 m. Fixed boundary
conditions are assumed at each edge. The trapezoidal corrugated
sheet is subject to a uniform distributed load of intensity equiva-
lent to 69 kN/m2. The panel has been analysed by a detailed shell
model using ANSYS with 71655 nodes and 71120 SHELL63 ele-
ments, shown in Fig. 5, and also an equivalent orthotropic plate



Table 6
Material properties of AS4/3501-6.

Axial modulusE1 (GPa) Transverse modulus E2 (GPa) Poisson’s ratio m12

148 10.5 0.3

Poisson’s ratio m23 Shear modulus G12 (GPa) Shear modulus G23 (GPa)
0.59 5.61 3.17
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Fig. 7. Variation of the in-plane stiffness for the round corrugation with L = 0, 1, 2 and 3 mm.
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Table 7
Stiffness properties for the example round corrugation.

Proposed method Yokozeki et al.
(2006)

FEM Error (%) Proposed
method vs. FEM

A11 (kN/m) 34.055 34.078 34.096 0.12

A12 (kN/m) 1.354 1.354 0.001

A22 (MN/m) 103.998 104.163 103.998 0.00

A66 (MN/m) 1.109 1.117 0.78

D11 (Nmm) 559.466 559.466 561.088 0.29

D12 (Nmm) 13.472 13.474 0.02

D22 (kNm) 1.710 1.710 1.711 0.017

D66 (Nmm) 157.558 157.581 0.015

Fig. 9. A detailed finite element model for a single round corrugation, for R = L =
3 mm.
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model. Fig. 6 shows the deformation of the example panel both
along and orthogonal to the corrugations, and compares the dis-
placements estimated from the detailed finite element model with
those from the proposed homogenised model. The displacements
are quite close although the detailed finite element model is
slightly stiffer than the equivalent model. The discrepancies are
due to the fixed boundary conditions along the corrugated edge,
since the equivalent model is not able to account for the stiffening
effect of this boundary.

4.2. Round corrugation

In this case, the round-corrugation panel is made of AS4/3501-6
Carbon/Epoxy laminate, whose properties are given in Table 6. The
ply angles are [0/90]s. Figs. 7 and 8 show the predicted in-plane
and out-plane stiffness of the corrugated composite as a function
of the corrugated shape parameters, the corrugation period
w ¼ 4R and length L. Table 7 shows a comparison between the pro-
posed method and that of Yokozeki et al. (2006) for the particular
case when R = 3 mm and L = 3 mm. This case is also modelled with
the detailed finite element model shown in Fig. 9 for b = 15 mm
and the results are also shown in Table 7. In this case, 1425 nodes
and 1344 SHELL181 elements were used for the FEM estimation
using ANSYS. The percentage difference between the results from
the proposed method and the finite element model is also given
and shows that the proposed method works well.
5. Conclusion

In this paper, an homogenisation-based analytical model, which
is suitable for any corrugation shape, is presented. The previous
methods usually require the original sheet material to be isotropic
or to be treated as isotropic; in contrast, the method presented in
this paper has no limitation in this regard. Furthermore, the cou-
pling stiffnesses are also considered in the proposed method. The
stiffness of the equivalent corrugated panel is obtained from the
geometry of a unit-cell and the stiffness properties of the original
sheet, which is convenient for the optimal design of morphing
skins. The panel has been treated both as an original corrugated
model and as an equivalent orthotropic model. Two numerical
examples illustrated the validity of the proposed method, shown
by the comparison of the results between the two approaches.

Parametric studies are planned to investigate the effects of cor-
rugation geometry, ply angles, laminate thickness, fibre volume
fraction, and so on. In addition the equivalent properties are simple
functions of parameters determining the corrugation geometry.
This is vital to incorporate the models into system models for con-
ceptual design optimisation of morphing wing systems and is the
subject of ongoing investigation.
Acknowledgements

The authors acknowledge funding from the European Research
Council through Grant No. 247045 entitled ‘‘Optimisation of Multi-
scale Structures with Applications to Morphing Aircraft’’.
References

Allaire, G., 2001. Shape Optimization by the Homogenization Method. Springer-
Verlag, New York.

Andrianov, I.V., Bolshakov, V.I., Danishevs’kyy, V.V., Weichert, D., 2008. Higher order
asymptotic homogenization and wave propagation in periodic composite
materials. Proceedings of the Royal Society A, Mathematical, Physical and
Engineering Sciences 464, 1181–1201.

ANSYS, 2011. Computer Software, version 13.0. <http://www.ansys.com/products/
ansys13-new-features.asp>.

Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I., Inman, D.J., 2011. A review of
morphing aircraft. Journal of Intelligent Material Systems and Structures 22 (9),
823–877.

Bendsoe, M., Kikuchi, N., 1998. Generating optimal topologies in structural design
using a homgenization method. Computer Method in Applied Mechanics and
Engineering 71, 197–224.

Briassoulis, D., 1986. Equivalent orthotropic properties of corrugated sheets.
Computers & Structures 23 (2), 129–138.

Gonella, S., Ruzzene, M., 2008. Homogenization and equivalent in-plane properties
of two-dimensional periodic lattices. International Journal of Solids and
Structures 45 (10), 2897–2915.

Kress, G., Winkler, M., 2010. Corrugated laminate homogenization model.
Composite Structures 92 (3), 795–810.

Kress, G., Winkler, M., 2011. Corrugated laminate analysis: A generalized plane-
strain problem. Composite Structures 93 (5), 1493–1504.

Liew, K.M., Peng, L.X., Kitipornchai, S., 2007. Nonlinear analysis of corrugated plates
using a FSDT and a meshfree method. Computer Methods in Applied Mechanics
and Engineering 196 (21-24), 2358–2376.

McFarland, D.E., 1967. An investigation of the static stability of corrugated
rectangular plates loaded in pure shear. Ph.D. thesis, University of Kansas,
Lawrence, KS.

Michel, J.C., Moulinec, H., Suquet, P., 1999. Effective properties of composite
materials with periodic microstructure: a computational approach. Computer
Methods in Applied Mechanics and Engineering 172, 109–143.

http://www.ansys.com/products/ansys13-new-features.asp
http://www.ansys.com/products/ansys13-new-features.asp


1462 Y. Xia et al. / International Journal of Solids and Structures 49 (2012) 1453–1462
Miehe, C., Schotte, J., Lambrecht, M., 2002. Homogenization of inelastic solid
materials at finite strains based on incremental minimization principles.
application to the texture analysis of polycrystals. Journal of the Mechanics
and Physics of Solids 50 (10), 2123–2167.

Miehe, C., Schotte, J., Schröder, J., 1999. Computational micro–macro transitions and
overall moduli in the analysis of polycrystals at large strains. Computational
Materials Science 16, 372–382.

Pellegrino, C., Galvanetto, U., Schrefler, B.A., 1999. Numerical homogenization of
periodic composite materials with non-linear material components.
International Journal for Numerical Methods in Engineering 46, 1609–1637.

Peng, L.X., Liew, K.M., Kitipornchai, S., 2007. Analysis of stiffened corrugated plates
based on the FSDT via the mesh-free method. International Journal of
Mechanical Sciences 49 (3), 364–378.

Ruzzene, M., Baz, A., 2000. Control of wave propagation in periodic composite
rods using shape memory inserts. Journal of Vibration and Acoustics 122,
151–159.

Saavedra Flores, E.I., de Souza Neto, E.A., 2010. Remarks on symmetry conditions in
computational homogenisation problems. Engineering Computations 27 (4),
551–575.

Saavedra Flores, E.I., de Souza Neto, E.A., Pearce, C., 2011. A large strain
computational multi-scale model for the dissipative behaviour of wood cell-
wall. Computational Materials Science 50 (3), 1202–1211.

Samanta, A., Mukhopadhyay, M., 1999. Finite element static and dynamic analysis
of folded plates. Engineering Structures 21, 277–287.

Smith, D.D., Isikveren, A.T., Ajaj, R.M., Friswell, M.I., 2010. Multidisciplinary design
optimization of an active nonplanar polymorphing wing. In: 27th Congress of
the International Council of the Aeronautical Sciences, 19–24 September 2010,
Nice, France.
Suquet, P., 1993. Overall potentials and extremal surfaces of power law or ideally
plastic materials. Journal of the Mechanics and Physics of Solids 41, 981–
1002.

Thill, C., Etches, J.A., Bond, I.P., Potter, K.D., Weaver, P.M., 2008a. Morphing skins - a
review. The Aeronautical Journal 112, 117–139.

Thill, C., Etches, J.A., Bond, I.P., Weaver, P.M., Potter, K.D., 2008b. Experimental and
parametric analysis of corrugated composite structures for morphing skin
applications. In: 19th International Conference on Adaptive Structures
Technology, 6–9 October 2008, Ascona, Switzerland.

Thill, C., Etches, J.A., Bond, I.P., Potter, K.D., Weaver, P.M., 2010a. Composite
corrugated structures for morphing wing skin applications. Smart Materials and
Structures 19, 124009.

Thill, C., Etches, J.A., Bond, I.P., Potter, K.D., Weaver, P.M., Wisnom, M.R., 2010b.
Investigation of trapezoidal corrugated aramid/epoxy laminates under large
tensile displacements transverse to the corrugation direction. Composites Part
A - Applied Science and Manufacturing 41 (1), 168–176.

Wellmann, C., Wriggers, P., 2008. Comparison of the macroscopic behavior of
granular materials modeled by different constitutive equations on the
microscale. Finite Elements in Analysis and Design 44, 259–271.

Winkler, M., Kress, G., 2010. Deformation limits for corrugated cross-ply laminates.
Composite Structures 92 (6), 1458–1468.

Xia, Y., Friswell, M.I., 2011. Equivalent models of corrugated laminates for morphing
skins. In: Ghasemi-Nejhad, M.N. (Ed.), Proceedings of SPIE, Active and Passive
Smart Structures and Integrated Systems, vol. 7977. San Diego, USA.

Yokozeki, T., Takeda, S.-I., Ogasawara, T., Ishikawa, T., 2006. Mechanical properties
of corrugated composites for candidate materials of flexible wing structures.
Composites: Part A 37, 1578–1586.


	Equivalent models of corrugated panels
	1 Introduction
	2 Modelling corrugated panels
	2.1 Coordinate systems
	2.2 Equivalent orthotropic plate model
	2.3 Evaluation of the stiffness properties
	2.3.1 Case 1: ? 
	2.3.2 Case 2: ? 
	2.3.3 Case 3: ? 
	2.3.4 Case 4: ? 
	2.3.5 Case 5: ? 
	2.3.6 Case 6: ? 
	2.3.7 Summary of stiffness terms


	3 Mechanical properties of typical corrugations
	4 Numerical examples
	4.1 Trapezoidal corrugation
	4.2 Round corrugation

	5 Conclusion
	Acknowledgements
	References


