

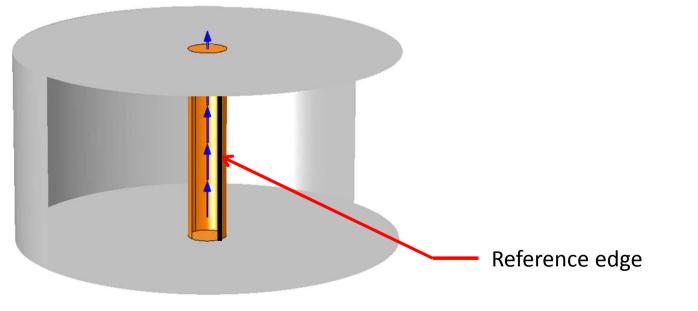
Single-turn and multi-turn coil domains in 3D



© 2012 COMSOL. All rights reserved.

COMSOL

Multi-turn coil – Linear


- Multiple parallel straight wires bundled in a sleeve
- Leads are modeled
- Geometry should not form a closed loop and must have a straight longitudinal axis
- Cross section can be arbitrary

Coil excitation method

- Direction of current flow is modeled by specifying a reference edge
- Also the two end surfaces should touch the external walls of the air domain surrounding the conductor

COMSOL

Modeling in COMSOL

- For detailed modeling steps, see the following file:
 - multi_coil_linear.mph
- This model shows only the DC case

Using multi-turn coil domain: Linear

Linea	r	•	
- Mult	ti-Turn Coil Domain		
Coil na	ame:		
1			
Coil co	onductivity:		
$\sigma_{\rm coil}$	6e7[S/m]	S/m	
Numb	er of turns:		
Ν	10		
Coil w	ire cross-section area:		
a _{coil}	1e-6[m^2]	m ²	
Coil ex	citation:		
Curre	nt	•	
Coil cu	urrent:		
/ _{coil}	1[A]	А	
• Mag	netic Field		
Consti	itutive relation:		
Relati	ve permeability	•	
B =	μ ₀ μ _r H		
	/e permeability:		
_	rom material	-	
	Torri matella	•	
- Elec	tric Field		
D =	€₀€ŗE		
Relativ	/e permittivity:		
			פאסנ

€_r From material

Note on coil properties

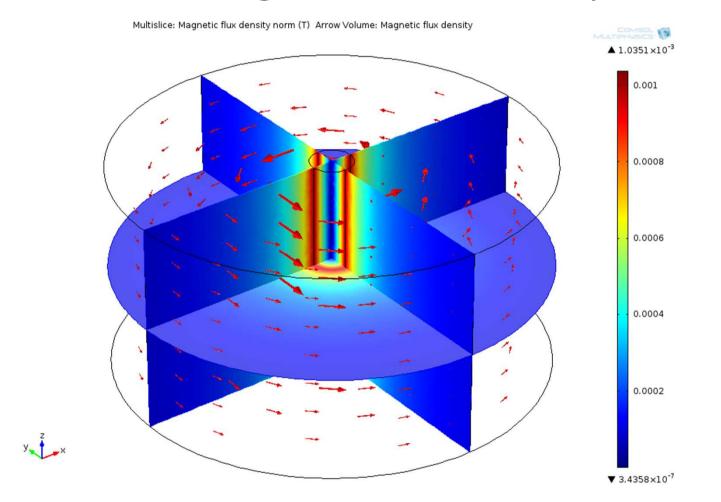
Linea	r	-
- Mult	ti-Turn Coil Domain	
Coil na	ame:	
1		
Coil co	onductivity:	
$\sigma_{\rm coil}$	6e7[S/m]	S/m
Numb	er of turns:	
Ν	10	
Coil w	ire cross-section area:	
a _{coil}	1e-6[m^2]	m ²
Coil ex	citation:	
Curre	nt	-
Coil cu	urrent:	
/ _{coil}	1[A]	A
 Mag 	netic Field	
	tutive relation:	
	ve permeability	-
в =	μ ₀ μ _r H	
_	e permeability:	
μ _r F	rom material	-
 Elect 	tric Field	
D =	€₀€₁E	
Relativ	e permittivity:	

- This is the electrical conductivity of the wire material
- This is the cross section area of each wire
- COMSOL uses these for computing coil resistance

• The relative permeability and relative permittivity values are for the homogenized coil domain

Options for wire cross section

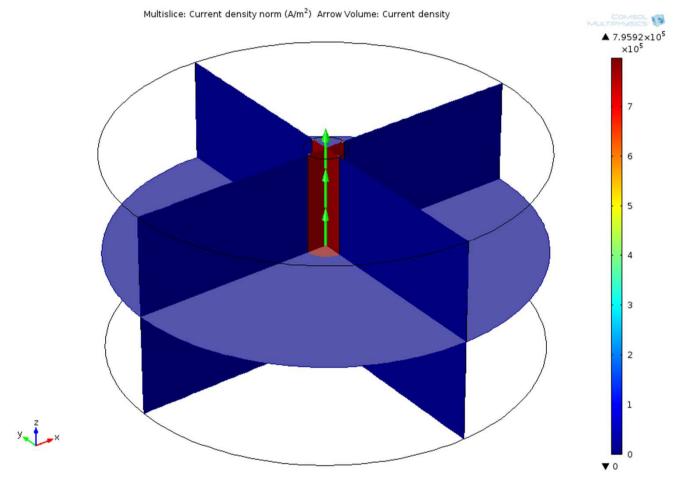
Coil wire cross-section area:


From round wire diameter

Standard wire gauge American wire gauge (Brown & Sharpe) From round wire diameter

User defined

- Default is set to **User defined** cross section area
- Can specify the wire diameter of round wire
- Can also specify AWG or SWG number
- **<u>Note</u>**: We are still not geometrically resolving the wires


Results – Magnetic flux density

Inductance = 1.02e-6 H

Results – Current density

Resistance = 0.003Ω

