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Abstract: The presence of a moving fluid in a 
porous rock modifies its mechanical response. 
Poroelasticity explains how the fluid inside the 
pores bears a portion of the total load supported 
by the rock. The remaining part of the load is 
supported by the elastic skeleton, which contains 
a laminar fluid coupled to the framework by 
equilibrium and continuity conditions. This work 
introduces an original tensorial formulation of 
Biot’s theory and the experimental thermo-
poroelastic parameters that support the theory. 
By defining a 4-dimensional total stress tensor 
and three basic poroelastic coefficients, we 
deduce a system of differential equations 
coupling the bulk rock and the fluid. The 
inclusion of the fourth dimension allows 
extending the theory of solid linear elasticity to 
thermoporoelastic rocks, taking into account the 
effect of both the fluid phase and the 
temperature. Introducing three volumetric 
thermal dilation coefficients, one for the fluid 
and two for the skeleton, a complete set of 
parameters for geothermal poroelastic rocks are 
obtained. 
 
Keywords: Poroelasticity, thermoporoelasticity, 
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1. Introduction 
 

Several factors affect the geomechanical 
behavior of porous crustal rocks containing 
fluids: porosity, pressure, and temperature, 
characteristics of the fluids, fissures, and faults. 
Rocks in underground systems (aquifers, 
geothermal and hydrocarbon reservoirs) are 
porous, compressible, and elastic. The presence 
of a moving fluid in the porous rock modifies its 
mechanical response. Its elasticity is evidenced 
by the compression that results from the decline 
of the fluid pressure, which can shorten the pore 
volume. This reduction of the pore volume can 
be the principal source of fluid released from 
storage. A rock mechanics model is a group of 
equations capable of predicting the porous 
medium deformation under different internal and 

external forces. In this paper, we present an 
original four-dimensional tensorial formulation 
of linear thermo-poroelasticity theory. This 
formulation makes more comprehensible the 
linear Biot’s theory, rendering the resulting 
equations more convenient to be solved using the 
Finite Element Method. To illustrate practical 
aspects of our model some classic applications 
are outlined and solved using the Earth Science 
Module of COMSOL-Multiphysics. 
 
1.1 Experimental background  
 
In classic elastic solids only the two Lamé 
moduli, (l, G) or Young’s elastic coefficient and 
Poisson’s ratio (E, n), are sufficient to describe 
the relations between strains and stresses. In 
poroelasticity, we need five poroelastic moduli 
for the same relationships (Bundschuh and 
Suárez, 2009), but only three of these parameters 
are independent. The Biot’s field variables for an 
isotropic porous rock are the stress s acting in 
the rock, the bulk volumetric strain εB, the pore 
pressure pf and the variation of fluid mass 
content ζ. The linear relations among these 
variables are the experimental foundations of 
Biot’s poroelastic theory (Biot & Willis, 1957; 
Wang, 2000): 
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Where KB, H, and R are poroelastic coefficients 
that are experimentally measured as follows 
(Wang, 2000): 
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The following figure (1) illustrates all the 
parts forming a poroelastic medium. 
 

 
Figure 1. Skeleton of sandstone showing its pores and 
solid grains (3×3×3 mm3).  (Piri, 2003). 
 
Here VB is the bulk volume, consisting of the 
rock skeleton formed by the union of the volume 
of the pores VF and the volume of the solid 
matrix VS (Fig. 1). The control volume is DVB. 
The drained coefficients KB and CB are the bulk 
modulus and the bulk compressibility of the 
rock, respectively; 1/H is a poroelastic expansion 
coefficient, which describes how much DVB 
changes when pf changes while keeping the 
applied stress s constant; 1/H also measures the 
changes of ζ when s changes and pf remains 
constant. Finally 1/R is an unconstrained specific 
storage coefficient, which represents the changes 
of ζ when pf changes. Inverting the matrix 
equation (1) and replacing the value of s in ζ we 
obtain: 
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The sign conventions are stress s > 0 in tension 
and s < 0 in compression; the volumetric strain 
εB > 0 in expansion and εB < 0 in contraction; the 
fluid content ζ  > 0 if fluid is added to the control 
volume DVB and ζ < 0 if fluid is extracted from 
DVB; the pore pressure pf > 0 if it is larger than 
the atmospheric pressure.  

Biot (1941) and (Biot & Willis, 1957) 
introduced three additional parameters, b, M and 
C, that are fundamental for the tensorial 
formulation herein presented. 1/M is called the 
constrained specific storage, which is equal to 
the change of ζ when pf changes measured at 
constant strain. Both parameters M and C are 
expressed in terms of the three fundamental ones 
defined in equation (2): 
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Let CS = 1/KS be the compressibility of the solid 
matrix. The Biot-Willis coefficient b is defined 
as the change of confining pressure pk with 
respect to the fluid pressure change when the 
total volumetric strain remains constant: 
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The coefficient C represents the coupling of 
deformations between the solid grains and the 
fluid. The coefficient M is the inverse of the 
constrained specific storage, measured at 
constant strain (Wang, 2000); this parameter 
characterizes the elastic properties of the fluid 
because it measures how the fluid pressure 
changes when ζ changes.  

These three parameters b, M and C are at the 
core of the poroelastic partial differential 
equations we introduce herein (Bundschuh and 
Suárez, 2009).  
 
2. Isothermal Poroelasticity Model 
 

Let us and uf be the displacements of the 
solid and fluid particles; let u = uf – us be the 
displacement of the fluid phase relative to the 
solid matrix respectively. Let εs, εf, js, j, Vs and 
Vf be the volumetric dilatations, porosities and 
volumes of each phase; – εV is the volumetric 
deformation of the fluid phase relative to the 
solid phase. The mathematical expressions of 
these variables are: 
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Biot and Willis (1957) introduced the strain 
variable ζ (u, t), defined in equation (3), to 
describe the volumetric deformation of the fluid 
relative to the deformation of the solid with 
homogeneous porosity: 
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The function ζ represents the variation of 
fluid content in the pore during a poroelastic 
deformation. The total applied stresses in the 
porous rock are similar to the equations of 
classic elasticity. However, we need to couple 
the effect of the fluid in the pores. The linear 
components of the global stresses, deduced 
experimentally by Biot, (Biot, 1941; Biot and 
Willis, 1957; Wang, 2000) are: 
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The fluid pressure is deduced from equation (3): 
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We define a two-order tensor sT = (sij) in 
four dimensions, which includes the bulk stress 
tensor sB acting in the porous rock and the fluid 
stress sF acting in the fluid inside the pores, 
positive in compression: 
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This tensorial equation becomes identical to 
the Hookean solids equation, when the rock has 
zero porosity and b = 0. From equations (8) and 
(9), we deduce that: 

 
ij ij f ijb pσ τ δ= −             (11) 

2ij B ij ije Gτ λ δ ε= +             (12) 

Tensor tij is called the Terzaghi (1943) 
effective stress that acts only in the solid matrix; 
bpf is the pore-fluid pressure. Since there are no 
shear tensions in the fluid, the pore fluid pressure 
affects only the normal tensions si (i = x, y, z). 
The functions sij are the applied stresses acting 
in the porous rock saturated with fluid. The solid 
matrix (tij) supports one portion of the total 
applied tensions in the rock and the fluid in the 
pores (bpf ) supports the other part. This is a 
maximum for soils, when b º 1 and is minimum 
for rocks with very low porosity where b º 0. 
For this reason, b is called the effective stress 
coefficient. 

Inverting the matrices of equations (8) and 
(9), we arrive to the following tensorial form of 
the poroelastic strains: 
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The coefficient KU is the undrained bulk 
modulus, which is related to the previous defined 
coefficients. Note that both tensorial equations 
(10) and (13) only need four basic poroelastic 
constants. The presence of fluid in the pores adds 
an extra tension due to the hydrostatic pressure, 
which is identified with the pore pressure, 
because it is supposed that all the pores are 
interconnected. This linear theory is appropriate 
for isothermal, homogeneous, and isotropic 
porous rocks. 
 



3. ThermoPoroelasticity Model 
 

The equations of non-isothermal poroelastic 
processes are deduced using the Gibbs thermo-
poroelastic potential or available enthalpy per 
unit volume and the energy dissipation function 
of the skeleton (Coussy, 1991).  

Analytic expressions are constructed in terms 
of the stresses, the porosity, the pore pressure, 
and the density of entropy per unit volume of 
porous rock. As we did for the isothermal 
poroelasticity, we can write in a single four-
dimensional tensor the thermoporoelastic 
equations relating stresses and strains. We have 
for the pore pressure: 
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The volumetric thermal dilatation coefficient 
gB [1/K] measures the dilatation of the skeleton 
and gj [1/K] measures the dilatation of the pores:  
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The fluid bulk modulus Kf and the thermal 
expansivity of the fluid gf  [1/K] are defined as 
follows: 
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The term pk is the confining pressure. 
Expanding the corresponding functions of the 
Gibbs potential and equating to zero the energy 
dissipation we obtain the 4D thermoporoelastic 
equations, which include the thermal tensions in 
the total stress tensor (Bundschuh and Suárez, 
2009): 
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In this case, an initial reference temperature T0 
and an initial pore pressure p0 are necessary 
because both thermodynamic variables T and p 
are going to change in non-isothermal processes 
occurring in porous rock. The fluid stress is 
deduced in a similar way: 
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4. Dynamic Poroelastic Equations  
 

The formulation we introduced herein is very 
convenient to be solved using the Finite Element 
Method. The fundamental poroelastic differential 
equation is the tensorial form of Newton’s 
second law in continuum porous rock dynamics: 
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The terms sT and εT are the equivalent vectorial 
form of tensorial equations (20) and CB is the 
matrix of poroelastic constants. While F is the 
body force acting on the rock and the tensor 
differential operator is given by: 
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Where u = (ux, uy, uz) is the displacement vector 
of equation (6). Using the operator  in 
equation (22), the dynamic poroelastic equation 
becomes: 
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4.1 Solution of Thermoporoelastic Equations: 
The Finite Element Method 
Equation (24) includes Biot’s poroelastic theory. 
It can be formulated and numerically solved 
using the Finite Element Method (FEM). Let Ω 
be the bulk volume of the porous rock, and let 
∑Ω be its boundary, u is the set of admissible 
displacements in Eq. (22); fb is the volumetric 
force and fs is the force acting on the surface ∑Ω. 
After doing some algebra we arrive to a FEM 
fundamental equation for every element Ve in the 
discretization: 
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de is a vector containing the displacements of the 
nodes in each Ve. Equation (25) approximates the 
displacement u of the poroelastic rock. Fe is the 
vector of total nodal forces. Ke and Me are the 
stiffness and equivalent mass matrices for the 
finite element Ve. The mathematical definitions 
of both matrices are: 
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Where is the matrix of shape functions that 
interpolate the displacements (Liu and Quek, 
2003). Matrix  is called the strain poroelastic 
matrix. 





 
5. Use of COMSOL Multiphysics 
 
This section contains two brief illustrations of 
the deformation of an aquifer (Leake & Hsieh, 
1997) and the form that a temperature change 
can affect its poroelastic deformation. In the first 
example, we assume cold water at 20°C (1000 
kg/m3). After, we consider a temperature of 
250°C (50 bar, 800.4 kg/m3). Results are shown 
in figures (4) to (9). To simplify the discussion 
we use the same model previously solved by 
COMSOL-Multiphysics and described in the 
Earth Science Module (COMSOL AB, 2006):  
“Three sedimentary layers overlay impermeable 
bedrock in a basin where faulting creates a 
bedrock step (BS) near the mountain front (Fig. 
2). The sediment stack totals 420 m at the 
deepest point of the basin (x = 0 m) but thins to 
120 m above the step (x > 4000 m). The top two 

layers of the sequence are each 20 m thick. The 
first and third layers are aquifers; the middle 
layer is relatively impermeable to flow.  
 

 

Bedrock 
step 

 
Figure 2. Simplified geometry of the aquifer and the 
impermeable bedrock in the basin. Initial state. 
 

 
 
Figure 3. The mesh of the basin with 2967 elements. 
 
As given by the problem statement, the materials 
here are homogeneous and isotropic within a 
layer. The flow field is initially at steady state, 
but pumping from the lower aquifer reduces 
hydraulic head by 6 m per year at the basin 
center (under isothermal conditions). The head 
drop moves fluid away from the step. The fluid 
supply in the upper reservoir is limitless. The 
period of interest is 10 years”. 
 The corresponding FE mesh has 2967 
elements excluding the bedrock step (Figure 3). 
The rock is Hookean, poroelastic and isothermal. 
In the first example we use the same data of the 
ES Module user’s guide, except for the Biot-
Willis coefficient we assume that b = 0.3.  



 
 
Figure 4. Poroelastic deformation of the basin for the 
BS problem with cold water (20°C). Streamlines 
represent the fluid to porous rock coupling. 
 

 
 
Figure 6. Vertical strain at the basin with a BS. Case 
of cold water (20°C).  
 

 
 
Figure 8. Horizontal strain at the basin with a BS. 
Case of cold water (20°C). 

 
 
Figure 5. Poroelastic deformation of the basin for the 
BS problem with hot water (250°C). Streamlines 
represent the fluid to porous rock coupling. 
 

 
 
Figure 7. Vertical strain at the basin with a BS. Case 
of hot water (250°C). 
 

 
 
Figure 9. Horizontal strain at the basin with a BS. 
Case of hot water (250°C). 



6. Discussion of Results 
 

The two examples presented herein were 
solved using COMSOL–Multiphysics for a well-
known problem of linked fluid flow and solid 
deformation near a bedrock step in a sedimentary 
basin described in the Earth Science module. The 
problem concerns the impact of pumping for a 
basin filled with sediments draping an 
impervious fault block. In the first example, we 
considered the water in the aquifer to be cold, at 
20°C. In the second example, the water is hot, at 
250°C. The basin is composed of three layers 
having a total depth of 500 m and is 5000 m long 
in both cases. 

Figures (4) and (5) show simulation results 
for years 1, 2, 5, and 10, respectively. The 
difference here with the results of COMSOL 
Multiphysics is that we have performed the 
simulation of a thermoporoelastic - coupled 
deformation when the water in the aquifer 
corresponds to geothermal conditions (fluid 
density of 800.4 kg/m3, temperature of 250 °C, 
and pressure of 50 bar). Figures (6) and (7) 
compare the vertical strains and figures (8) and 
(9) compare the horizontal strains, in both cases 
respectively. Figures (8) and (9) also illustrate 
the evolution of lateral deformations that 
compensate for the changing surface elevation 
above the bedrock step. Note that vertical scales 
are different in both examples for clarity. 
 
7. Conclusions 
  
■ All crustal rocks forming geothermal 
reservoirs are poroelastic and the fluid presence 
inside the pores affects their geomechanical 
properties.  
■ The elasticity of aquifers and geothermal 
reservoirs is evidenced by the compression 
resulting from the decline of the fluid pressure, 
which can shorten the pore volume. This reduction 
of the pore volume can be the principal source of 
fluid released from storage 
■ The immediate physical experience shows 
that the supply or extraction of heat produces 
deformations in the rocks. Any variation of 
temperature induces a thermo-poroelastic 
behavior that influences the elastic response of 
porous rocks. 
■ We introduced herein a general tensorial 
thermoporoelastic model that takes into account 

both the fluid and the temperature effects in 
linear porous rock deformations, and presenting 
two practical examples solved with COMSOL. 
■ The second example illustrates the influence 
of temperature changes on the poroelastic strains. 
For cold water, the estimated value of εz is about  
-1.5ä10-4, while for hot water εz is -7.5ä10-4. 
Therefore, the poroelastic deformations are much 
higher in geothermal reservoirs than in 
isothermal aquifers. In the first case the bulk 
modulus of water Kw= 0.45 GPa, corresponding 
to T = 250°C. For cold aquifers Kw= 2.5 GPa. 
■ Water bulk modulus affect other poroelastic 
coefficients, including the expansivity of rocks, 
which is relatively small, but its effects can 
produce severe structural damages in porous 
rocks subjected to strong temperature gradients, 
as happens during the injection of cold fluids.  
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