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Abstract: The usual approach for estimating
parameters of mathematical models of engi-
neering systems is based upon the least squares
method (LS) in which a system response is
compared to a model and the sum of the squared
differences between the model and the mea-
sured response is minimized. The method as
usually employed is based upon the model sen-
sitivities, S, often determined by finite dif-
ferencing. Using the PDE features of COM-
SOL allows us to solve directly for S. The re-
sults are maximum a posterior probable values
along with estimates of confidence intervals.
For other than Gaussian distributed noise and
when more detailed statistical information is
desired, recourse must be made to Bayesian
inference. Unfortunately this approach is com-
putationally expensive and is realistic when
reasonably large numbers of parameters are
to be found only if the complex responses can
be quickly sampled. One solution is the use
of sparse grids. Such sparse grids require the
prior specification of a realistic parameter space
for sampling. This is best based upon an ini-
tial guess of the parameter values obtained
from the least squares approach.

Keywords: Parameter estimation, Sparse Grids,
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1. Introduction

The standard approach to estimating parame-
ters is the Least Squares analysis in which the
estimated parameters are those that minimize
the norm of the residuals defined as the dif-
ference between the predictions of the model
and the data. If desired, the residuals can be
weighted but usually the weights are taken to
be unity. The least squares approach can be
shown to be to same as the maximum likeli-
hood method based upon the fundamental as-
sumptions that the model is correct and that
any deviation of the data from the model is
due to normally distributed zero mean errors.
In the likelihood approach, the weights, if used,
are based upon the statistical properties of the
errors. For non linear problems, the solution
is an iterative one based upon sensitivities

computed at each estimate of the parameters.
Letting the model be represented by M(Θ)
where Θ represents a vector of the parame-
ters sought, the estimated parameters, Θ̂, are
those that minimize the functional L(Θ̂) weighted
by Σ−1

L(Θ̂) = rT (Θ̂)Σ−1r(Θ̂) (1a)

where the residuals r are defined by

r(Θ̂) ≡ D − M(Θ̂) (1b)

Linearizing Eq. 1b about an estimate Θ̂i gives

r(Θ̂i) = D − M(Θ̂) −
dM

dΘ

∣

∣

Θ̂i

(Θ̂i − Θ)(1c)

and Θ̂i+1 is given by

Θ̂i+1 − Θ̂i =(AT

i Σ−1Ai + βI)−1

AT

i Σ−1[D − M(Θ̂i)]
(2a)

where Ai = ∂M/∂Θ|Θ̂i. For N measurements
and d parameters, Θ is a [d x 1] column vector,
A is a [N x d] matrix and β, the Levenberg-
Marquardt parameter [1], is used for ill con-
ditioned problems. Upon convergence of the
iterations, the estimate Θ̂ satisfies

E[Θ̂] = Θ (2b)

cov[Θ̂] = (AT Σ−1A)−1 (2c)

A serious question is how to compute ∂M/∂Θ.
The simplest method is to use finite differenc-
ing, i.e., ∂M/∂Θ = (M(Θ + δΘ) − M(Θ −
δΘ))/2δΘ. Questions arise about the size of
δΘ and the accuracy of the 1st order differ-
encing. A better way is to solve the sensitiv-
ity equations directly. Consider a one dimen-
sional transient thermal problem for which the
temperature, T , and the sensitivity to the con-
vective heat transfer coefficient, u = ∂T/∂h,
satisfy

ρc
∂T

∂t
= k∇2(T ) (3a)

−k
∂T

∂x
= h(T − T∞) on S (3b)

ρc
∂u

∂t
= k∇2(u) (3c)

−k
∂u

∂x
= (T − T∞) + hu on S (3d)

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston



where S is the boundary subject to convec-
tive heat transfer. By using the PDE solver in
COMSOL it is possible to solve directly for u.
There is no significant difference in computing
time when solving for u compared to finite dif-
ferencing, but the accuracy with which T and
u are computed are comparable.

2. The Problem

A composite panel, Figure 1, was heated with
an electric blanket applied to its upper sur-
face and cooled by free convection from the
bottom surface and by forced convection from
the stringer. Figure 2 is a cross section of
the panel. The goal was to estimate the heat
losses from the upper and lower surfaces from
temperatures measured with thermocouples at-
tached to the surface and located as shown
and from infrared thermograms of the upper
surface.

Figure 1. The Panel (upside down)
(the distance along the stringer is x,
perpendicular to the stringer is y,

and vertical is z)

1

2

3 4

5

8

7

910

forced convection

Figure 2: Schematic of the panel
(along the y axis at the mid x value)

(showing typical locations of thermocouples
placed at the numbered points)

The panel was initially at room temperature
and transiently heated by a constant current
applied to the heating blanket. The heat losses,
characterized by the parameter vector Θ =
{ht, hu, hs, hb} where the hi represent the con-
vective heat transfer coefficients for the panel
top and underside surfaces, and stringer side
and bottom surfaces respectively, were esti-

mated from the temperatures measured dur-
ing heating as shown in Figure 3 plus the tem-
peratures on the surface of the electric blanket
measured with infrared thermograms.
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Figure 3: Typical Time History of Panel
Temperatures (numbers denote the
thermocouples shown on Figure 2)
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Figure 4: Comparison of Model (dashed)
and Data (solid)

(TC=panel top, UTC=under panel,
STC=stringer, TG thermogram)

The panel temperatures needed in Eq. 2 for
the model M(Θ) were computed using Com-
sol 3.5 [2]. Figure 4 shows the agreement. Un-
fortunately, the agreement is not particularly
good for several reasons: 1) it is difficult to
separate the effects. Heat lost from the region
of the panel that does not have a stringer un-
der it is proportional to ht + hu and several
different combinations of ht and hu that have
the same sum will produce comparable results;
2) Because several of the sensitivities, Fig-
ure 5a, are comparable, the matrix AT Σ−1A
is very ill conditioned. As a consequence, a
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map of the norm of the residuals, Figure 5b,
displays many local minima and a very flat
surface. Consequently the least squares algo-
rithm leads to multiple solutions; 3) because
of the flatness of the surface, small differences
in computing the sensitivities will lead to dra-
matic movement through the 4 dimensional
space of parameters; 4) the physical proper-
ties, density, specific heat, and conductivity,
are temperature dependent and poorly quan-
tified.

Figure 5a: Sensitivities
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Figure 5b: Contours of L showing
local minima and flatness

3. Computing Sensitivities

With such a flat surface, small errors in com-
puting the sensitivities, ∂T/∂h, gave rise to
very erratic progress during the iterative so-
lution of Eq. 2. Figures 6 compare the sen-
sitivities to hb computed for several different
thermocouple positions (136 is at the bottom
of the stringer and 65 is on the upper surface
centered above the stringer) . Figure 6a is the
solution for ∂T/∂hb computed from the sen-

sitivity equation using the PDE solver, Fig-
ure 6b is based upon finite differencing. Note
that while the sensitivities at thermocouple
136 are comparable, those for the other loca-
tions based on finite differencing are dramat-
ically wrong.
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Figure 6a: Time History of ∂T/∂hb
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Figure 6b: Time History of ∂T/∂hb

based on Finite Differences
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Figure 7: Time History of ∂T/∂hs

based on Finite Differences using strict
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If the time integration is set to strict then
there is negligible difference between the two
methods. However, using the strict option can
lead to unusual results. Figure 7 shows the
results for computing ∂T/∂hs using the strict
option and we see unexpected results near the
time that the heating is turned off and at the
end of the experiment. It is not clear why the
finite difference result for the sensitivities to
hs and hb differ.

4. Using Bayesian Inference

An approach based upon hierarchical Bayesian
inference [3] allows us to incorporate knowl-
edge about the reasonable values of the pa-
rameters sought and information about any
other parameters involved in the model. If the
model response can be computed by interpo-
lating a response surface, then this approach
becomes feasible. Sparse grids can provide a
reasonable method for constructing and inter-
polating the response surface.

The Bayesian approach consists of determin-
ing the joint probability distribution from Bayes
relation. Consider the case of two parameters
to be estimated, Θ1, Θ2, from a set of data
D that is presumed to be contaminated with
a normally distributed error of standard de-
viation σ. The joint pdf is given by Eq. 4a
and the marginal pdf for Θ1 is obtained by in-
tegrating over all other parameters under the
assumption of know prior distributions for all
of the parameters.

p(Θ1, Θ2|D) ∝ p(D|Θ1, Θ2)p(Θ1, Θ2)(4a)

p(Θ1|D) =

∫

p(Θ1, Θ2|D)dΘ2 (4b)

For simple models, the evaluation of the right
hand side of Eq. 4b for the integration usu-
ally does not entail substantial computational
costs. However, for complex models the com-
putational cost is often too high to be accept-
able. Using 7 Gaussian integration points re-
quires evaluating the model at 74=2401 points.
On the other hand, a sparse grid of level 4 for
4 parameters requires only 441 sample points.

Smolyak [4] developed a method that yields
a high level of quality when interpolating and

integrating functions. It consists of combin-
ing different orders of one dimensional inter-
polation on nested spaces, i.e., sets of sam-
ple points for which the points of each set
are intermediate to the points of the preced-
ing set. The interpolating function is a set
of linear combinations of products of the uni-
variate polynomials. Each one dimensional in-
terpolation is exact on certain nested spaces.
Consider three sample points in each of the x
and y directions, Figure 8a. This will allow us
to represent the univariate functions, f(x) =
[1, x, x2], f(y) = [1, y, y2]. Smolyak’s method
represents f(x, y) by products of these uni-
variate representations, i.e., f(x, y) = f(x)f(y).
In this case we obtain
f(x, y) = [1, x, y, x2, xy, y2, x2y, xy2, x2y2].

8a) Level 1 Points (O)

8b) Level 2 Additional Points (X)
Figure 8. Level 1 and Level 2 Sparse Grid Points

Obviously with the 5 sample points the prod-
uct cannot represent all 9 terms and some
of the terms are eliminated, giving f(x, y) =
[1, x, y, x2, y2], that is we filter the product so-
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lution and the terms xy, x2y, y2x are not rep-
resented.

A sparse grid can be characterized by its ’level’,
essentially the order of the complete polyno-
mial that can be interpolated. When using
nested grids, each level contains the contribu-
tions of the lower levels and each level lacks
some terms needed to complete the polyno-
mial. Level 2 is formed by adding eight (8)
additional points as shown in Figure 8b. The
univariate function representations would be
f(x) = [1, x, x2, x3, x4], f(y) = [1, y, y2, y3, y4],
giving a product involving 25 terms. And
again the 13 sample points would result in a
representation that lacks the terms x3y, xy3

to make a complete 4th order polynomial.

A sparse grid was defined for the 4 differ-
ent values of h, with each ranging from 0.1
h(LS) to 3 h(LS) where h(LS) was the esti-
mate obtained from the least squares method,
Eq. 3. Response surfaces were obtained for
the temperature, T , and each of the sensitivi-
ties, ∂T/∂hi. The accuracy of the sparse grid
interpolation was judged by comparing the in-
terpolated values with the exact ones over a
tensor grid. Figure 9 depicts the error at a
time of 1100 seconds, just before the heating
was turned off for a sparse grid of level 4 (441
sparse grid points).
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Figure 9a. Error in Interpolating T
Using the Clenshaw-Curtis grid, Level 4

The large error in the vicinity of ht = hu = 0
is due rapidly increasing temperature as shown
in Figure 9b. Figure 9c displays the error in
the sensitivity ∂T/∂hu, showing comparable
behavior.
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Figure 9b. Temperature Response Surface
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Figure 9c. Error in ∂T/∂hu

Using the Clenshaw-Curtis grid, Level 4
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Figure 10a. Error in Interpolating T
Using the Chebyshev grid, Level 4

An additional option when using sparse grids
is the choice of the grid. The most common
are those based on Chebyshev polynomials,
the Clenshaw-Curtis grid, and the Patterson
grid. Figure 10 shows the error associated
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with the Chebyshev grid and in general the
errors are about 1/2 of those of the Clenshaw-
Curtis grid. However, the Chebyshev grid shows
a tendency for ripple like errors as one would
expect since it is based on sinusoidal min-max
interpolants.
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Figure 10b. Error in ∂T/∂hu

Using the Chebyshev grid, Level 4
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Figure 11. Convergence as a function of level

A difficult question to resolve is the level of
sparse grid needed. Figure 11 shows the con-
vergence of the errors as a function of the num-
ber of sparse grid points for interpolating the
temperatures and the sensitivities at a time
of 1100 sec. It would appear that adequate
convergence has been achieved at level 4. The
errors displayed in Figures 9 and 10 are over
the entire parameter space for a specific time.
Unfortunately this is not the entire story. One
also needs to be concerned about the accuracy
of the interpolation over the entire time of the
experiment. Figure 12 shows the effect of dif-
ferent levels. It is clear that adequate conver-
gence has been reached by level 4 as long as
the interpolation is restricted to the heating

period. The interpolation is not capable of
capturing the correct response over the entire
period. The solution, of course is to fit each
period, the heating and the cooling, indepen-
dently.
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Figure 12b. ∂T/∂hu as a function of time

5. Computing the pdf

Given an adequate level of interpolation ac-
curacy, the marginal probability densities for
the different parameters are obtained from Eq.
4b by Gaussian integration. The only prob-
lem is that if the parameter space sampled
by the sparse grid is too large, the interpola-
tion may not be sufficiently accurate to give
good results. In addition, if the integration
points have to cover too wide a parameter
range, values of h far from the least squares
estimates give such large values of T (model)−
T (data) that are used in evaluating the likeli-
hood that substantial numerical problems will
be encountered. Figure 13 shows a typical pdf
based on 40 Gaussian quadrature points. For
Figure 13a the quadrature points spanned a
range ± 4 standard deviations derived from
the least square estimates. For Figure 13b,
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the integration spanned ± 0.5 standard devi-
ations.
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6. Conclusions

Calculating the marginal probability distribu-
tion from Eq. 3 requires a fairly dense sam-
pling of the integrand near the point of max-
imum probability and, if using a sparse grid
a reasonable level of accuracy. For the prob-
lems considered here, and true in general, the
response surface shows some strong variations
near the vertices of the parameter space, Fig-
ure 9b. Consequently it is important to choose
the smallest parameter ranges possible. Al-
though the maximum a-posteriori probability
may not coincide with the estimated value of
from the least squares analysis, θ̂, we have
found that defining the range of each param-
eter to be θ̂ ± n σ(θ̂) where σ(θ̂) is given by
Eq. 2c and n is a small number, usually 4 or
5, suffices. The advantage of the sparse grid
(or of any other interpolation) is that locating
the peak probability and the effect of assum-
ing different priors in Eq. 4 can be examined
with minimal computational expense. For the
panel, computing the time history for a given
set of parameters required in the order of 65
seconds compared to 0.8 seconds when using
the sparse grid of level 5. Further details of
both the sparse grid and Bayesian inference

methods are available in [5].
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