Complex k-bands of plasmonic crystal slabs

Giuseppe Parisi, ${ }^{1,2, *}$ Pierfrancesco Zilio, ${ }^{1,2}$ and Filippo Romanato ${ }^{1,2}$
${ }^{1}$ Physics Department, Padova University, Via Marzolo 8, 35131 Padova, Italy
${ }^{2}$ LaNN - Laboratory of Nanofabrication of Nanodevices, Corso Stati Uniti 4, 35127 Padova, Italy

Introduction: We present a Finite Element Method (FEM) to calculate the complex valued $\mathbf{k}(\omega)$ dispersion curves of a plasmonic crystal slab in presence of both dispersive and lossy materials. The method can be exploited to study plasmonic crystal slabs.

Results: The figures below show the retrieved results: the TE and TM modes compared with Transmittance maps (Fig. 2,3 respectively), the H_{y} and $|E|$ fields profiles (Fig.4) and the imaginary part of modes eigenvalues (Fig.5)

Computational Methods: The method relies on the weak formulation of the Helmholtz's eigenvalue equation [1,2,3]. :

$$
\left\{\begin{array}{cc}
\nabla \times(\hat{p} \nabla \times \mathbf{H})-\omega^{2} \hat{q} \mathbf{H}=0 & \hat{p}=1 / \hat{\mu}(\mathbf{r}, \omega), \hat{q} \hat{\varepsilon}(\mathbf{r}, \omega) \\
\mathbf{H}=e^{-i k \mathbf{k}} \mathbf{u}(\mathbf{r}) & \mathbf{u}(\mathbf{r}) \text { Bloch function, } \mathbf{k} \text { eigenvalue }
\end{array}\right.
$$

$$
\begin{aligned}
& \int_{\Omega} d^{3} \mathbf{r}\left(\hat{p}\left[k^{2}(\mathbf{v} \cdot \mathbf{u})-(\mathbf{k} \cdot \mathbf{v})(\mathbf{k} \cdot \mathbf{u})\right]-i \hat{p} \mathbf{v} \cdot[\mathbf{k} \times(\nabla \times \mathbf{u})]-i(\nabla \times \mathbf{v}) \cdot \hat{p}(\mathbf{k} \times \mathbf{u})\right)+ \\
& +\int_{\Omega} d^{3} \mathbf{r}\left((\nabla \times \mathbf{v}) \cdot \hat{p}(\nabla \times \mathbf{u})-\hat{q} \frac{\omega^{2}}{c^{2}} \mathbf{v} \cdot \mathbf{u}\right)+\int_{\partial \Omega} d A \mathbf{v} \cdot[\hat{\mathbf{n}} \times \hat{p}(-i \mathbf{k} \times \mathbf{u}+\nabla \times \mathbf{u})]=0,
\end{aligned}
$$

In order to deal with leaky modes and to simulate Perfect Matched Layers (PML) an anistropic tensor is required in the form of:

$$
\hat{\varepsilon}=\varepsilon \hat{\Lambda}, \hat{\mu}=\mu \hat{\Lambda}, \quad \hat{\Lambda}=\left(\begin{array}{ccc}
c & 0 & 0 \\
0 & c & 0 \\
0 & 0 & c^{-1}
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
c=\alpha-i \beta \\
\beta=\bar{\sigma} \frac{\left|\left(z \mp\left|z_{0}\right|\right)\right|^{n}}{L^{n}}
\end{array} \cdot \kappa=\frac{\left.\left.\langle | \mathbf{H}\right|^{2}\right\rangle_{(1)}}{\left.\left.\langle | \mathbf{H}\right|^{2}\right\rangle_{(2)}}\right.
$$

Figure 2. TM modes

Figure 3. TE modes

Figure 4. H_{y} and $|\mathrm{E}|$ fields Conclusions: Our results prove that PML implementation allows to effectively study leaky modes, characteristic features of photonic crystal slabs, thus enabling the reconstruction of the correct radiative eigenmode profile.

References:

.1. D. Joannopoulos, Photonic Crystals Molding the Flow of Light
2. M. Davanco, "The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction," Opt. Express 15, 96819691 (2007).
3. C. Fietz, "Complex k band diagrams of 3D metamaterials/photonic crystals," Opt.
Express, 19, 19027-19041 (2011).

