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Abstract: For this study we use COMSOL 

Multiphysics 4.2a and the Subsurface Flow 

Module. We compare the output of 2D single 

fracture models as well as analytical solutions 

(Kocabas 2010) of the problem. The temperature 

signal is evaluated with the heat transfer mode 

while the coupled flow field is assumed to 

exhibit Darcy flow everywhere. The problem is 

time-dependent so we have to take into account a 

change in the boundary conditions from a 

Dirichlet to a Neumann condition which is 

activated at the time of change from the injection 

to the withdrawal phase. A numerical dispersion 

problem is encountered at the abrupt temperature 

change at the thermal front. The resolution in 

time and space of this step is the numerical 

"bottleneck" of the problem. Depending on the 

cell Peclet number we obtain an 

increasing/decreasing accuracy due to numerical 

dispersion. In case of high accuracy the solutions  

show negligible deviations. 
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1. Introduction 

 
Geothermal energy is considered to be a 

major potential source for energy supply in the 

currently ongoing turnover. The resource is 

stored in deep (3 – 5 km) subsurface reservoirs. 

To estimate efficiency of geothermal energy 

recovery knowledge of reservoir characteristics 

and thermal transport parameters is a 

prerequisite. Tracer testing have been widely 

used determine reservoir parameters. Here, tracer 

is a substance or energy quantity with known 

physical and/or chemical behavior, e.g. dyes, 

heat, radioactive isotopes. In general the tracer is 

injected into the reservoir, interacts with the 

reservoir material and is finally abstracted again. 

In tracer tests, state variables such as 

concentrations or temperature are monitored to 

obtain the return profiles and interpreted to infer 

estimates of transport parameters. Recently, heat 

has emerged as a useful type of tracer in which 

thermal transients have been monitored and 

temperature is employed as the state variable. 

The temperature return profile is analyzed to 

identify the equivalent fracture width or more 

precisely heat transport rate in a fracture/matrix 

configuration. There are several ways of 

performing a tracer test. In this study we focus 

on Single-Well Thermal Injection-Withdrawal 

Experiments (SWTIW), also known as Push-Pull 

Experiments, in a single fracture located in a low 

permeability matrix. The experimental design 

has two phases. Phase one starts with the 

injection of fluid with a defined temperature. In 

phase two we immediately abstract the fluid and 

record the temperature at the abstraction point. 

The analysis aims at the identification of the 

equivalent fracture width embedded in a 

dimensionless heat transfer rate parameter and 

this information can be obtained just from this 

temperature signal. 

 

2. Use of COMSOL Multiphysics   
 

In the presented study COMSOL 

Multiphysics 4.2a is used. For the time 

dependent study we apply the physics interfaces 

called as ‘Heat Transfer in Porous Media’ and 

 

 

 
Figure 1. Sketch of the model domain with hydraulic 

and thermal boundary conditions. The 'Mass Flux' and 

hence the advective heat flux changes sign after the 
injection phase. For the thermal boundary we then 

have a transition in the boundary condition from 

Dirichlet to Neumann (Maier et al. 2011).  
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‘Darcy's Law’ which are part of the ‘Subsurface 

Flow Module’. The two interfaces couple the 

steady fluid flow and  the unsteady heat transport 

fields quite effectively. The model domain 

consists of two subdomains, the fracture and the 

adjacent matrix (Fig. 1). 

 

Within that fracture/matrix geological 

configuration we assume an infinite lateral 

thermal conductivity in the fracture whereas the 

heat conduction and dispersion in the flow 

direction is neglected. In the matrix we assume a 

constant thermal conductivity. Thus the 

governing equations during the injection period 

reads: 
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Here the origin is shifted to the fracture matrix 

boundary. The concerning initial and boundary 

conditions are given by: 

 

0TTT m   at 0t  (3) 

iTT   at 0x  (4) 

mTT   at 0z  (5) 

0mT  as z  (6) 

 

For the backflow period, equations 2, 5 and 6 

remains the same.  The others changes as 

follows: 
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)0(  ptTT  at 0pt  (8) 

iTT   at jutLx   (8) 

)0(  ptmTmT  at 0pt  (9) 

 

Where tj is the total injection time and tp is the 

time variable for the backflow period. 

 

2.1 Governing Equations 

 

To implement the given mathematical model 

in COMSOL Multiphysics we solve for the 

steady flow field  in the fracture using Darcy´s 

Law: 
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The fluid flow solution is coupled into the 

Advection-Dispersion-Equation of the heat 

transport, which is solved everywhere: 
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The porosity  is space dependent with 5.  

inside of the fracture and zero in the matrix. 

Hence we have solely heat conduction in the 

matrix. For the thermal conductivity k  we need 

to meet the requirement of the system of 

equations given above the lateral thermal 

conductivity inside of the fracture is chosen to be 

kk f 1000 . (14) 

 

2.2 Numerical Model 

 

To save computational power the model 

domain is automatically adjusted to the region of 

interest. The fracture length is two times the 

travel distance of the tracer to avoid bias due to 

boundary effects. The travel distance is 

calculated from the Darcy velocity. While the 

width of the adjacent matrix is automatically 

calculated to five times the travel distance. At the 

inlet we apply a boundary layer to account for 

the injected abrupt temperature change (Fig. 2). 

This change is the numerical “bottleneck”. Since 

a vanishing dipersivity, which we assume for  

 

 
Figure 2. Zoom of the boundary layer/free triangular 
mesh. The boundary layers are at the inlet and at the 

fracture/matrix boundary on the matrix side. 
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Figure 3. The models were solved on an Intel(R) 

Core(TM) i7 CPU, Q 820 @1.73GHz, 8 GB RAM, 

64-bit Windows 7 system 

 

our model, leads to high cell Peclet number: 



l
cellPe


  (15) 

Where α is the dispersivity. Hence we have to 

apply a very fine mesh to minimize the cell 

Peclet number and to resolve the abrupt 

temperature change by minimizing the numerical 

dispersion. In theory this is possible, but 

unfortunately the increasing number of 

elements/degrees of freedom leads to 

unreasonable long computational times (Fig. 3). . 

For our model we obtain a exponential increase 

in computational time with increasing degrees of 

freedom. 

 

To estimate the effect of numerical dispersion 

on the recorded temperature signal we compare 

the numerical with analytical results of the 

described problem. 

 

 

 
Figure 4. Temperature distribution in the model 

domain after the injection for 036.0 . 

3. Results 
 

The given mathematical model (Eq. 1 through  

Eq. 9) of the problem can be solved via iterated 

Laplace transforms. A detailed derivation can be 

found in Kocabas (2010). The Solution for the 

dimensionless temperature DT  is given by: 
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Where nt  is the dimensionless pumping time, 

 and   are the dummy variables of the iterated 

Laplace transformation,   is the ratio of the 

injection-/pumping rate which is equated to one 

for all of the presented models and  is the 

dimensionless heat transfer rate parameter which 

is given by 

  22 b

t

c
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For a unit value of the parameter   we can 

see that the Temperature at the outlet is 

independent of the flow velocity. Therefore we 

can choose an arbitrary pumping rate and 

porosity to meet a good solvability of the 

numerical models. In a given geological 

configurations the first fraction is fixed, while 

the second fraction contains the injection time it   
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Figure 5. Temperature signal at the outlet during the 
withdrawal phase.  
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Figure 6. Deviation of the numerical results from the 
analytical solution. 

 

 

 

 
Figure 7. Temperature distribution along the fracture 

for different time steps while injecting. Here  is 

0.036 and the cell Peclet number is 3 * 10-3. 

 

 

 
Figure 8. Temperature distribution along the fracture 

for different time steps while injecting. Here  is 

0.036 and the cell Peclet number is 4 * 10-4. 

and the target parameter: the fracture half width 

b. 
 

The advancing front of the abrupt temperature 

change in the fracture is accompanied with a 

temperature signal which diffuse into the 

adjacent matrix (Fig. 4). In dependence of the 

heat transfer rate parameter we obtain for 

decreasing  values a decreasing fracture/matrix 

heat exchange. This effect is visible in Figure 5 

where we obtain an almost conserved 

temperature signal height for early data points 

(t<1). The comparison with the analytical results 

shows that the deviation decrease with a 

decreasing cell Peclet number (Fig. 6) and for 

lower cell Peclet numbers less data points are 

biased. 

 

The bias is due to numerical dispersion which 

leads to oscillations and a smearing of the 

advancing front (Fig. 7 and Fig. 8). Hence the 

bias starts earlier for higher cell Peclet numbers 

and last longer. The highest deviations occur in 

the region when the pumping time equals the 

injection time, in other words when the injected 

front reaches the inlet again. The lower cell 

Peclet number (Fig. 8) shows less oscillations 

and a steeper thermal front. 
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Figure 9. Temperature signal at the outlet during the 
withdrawal phase. 
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Figure 10. Deviation of the numerical results from the 

analytical solution. 



 

0 0,5 1 1,5 2 2,5

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
Alpha = 3,6

Cell Peclet = 1,6 * 10-1

Cell Peclet = 4 * 10-2

Cell Peclet = 4 * 10-3

Analytical Solution

dimensionless Time

d
im

e
n
s
io

n
le

s
s
 T

e
m

p
e

ra
tu

re

 
Figure 11. Temperature signal at the outlet during the 
withdrawal phase. 
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Figure 12. Deviation of the numerical results from the 
analytical solution. 

 

For increasing  the influence of the 

numerical dispersion on the temperature signal 

reduce in magnitude but has the same shape (Fig. 

9 and Fig. 10). Hence less effort has to be taken 

to get reasonable results. This behavior is due to 

the amount of heat which is transferred into the 

matrix. For higher   values more heat is 

exchanged which leads to a decaying thermal 

front. Therefore we obtain a minimizing of the 

error made due to numerical dispersion which 

affects the front most heavily.  

 

The influence of the numerical dispersion 

becomes negligible for 1 . This is shown in 

Figure 11 for 6.3 . While the effect of 

numerical dispersion vanished for high  values 

it is still not possible to use a too coarse mesh 

because this leads to a underestimation of the 

transferred heat and therefore to a biased 

temperature signal were the signal obtained from 

the numerical simulation is too high (Fig. 12). 

 

 

4. Discussion and Conclusion 
 

The modeling of discontinuous functions is a 

great challenge in numerical FE modeling. The 

neglected diffusion/dispersion in flow direction 

is a benchmark to estimate the influence of 

numerical dispersion on the results. On the other 

hand the comparison of the numerical results 

with the analytical solution allows the 

identification of critical zones  in the recorded 

temperature signal, which deviate due to 

diffusion/dispersion. Depending on the cell 

Peclet number and   one can see that with a 

smaller cell Peclet number the biased range gets 

also smaller as well as the magnitude of the 

deviation. In the considered data range we obtain 

that for each order of magnitude of increasing   

the deviation for a given cell Peclet number (here 

4 * 10
-3

) decrease by one order of magnitude. In 

general the numerical dispersion problem is 

encountered at the abrupt temperature change at 

the thermal front. The resolution in time and 

space of this step is the numerical "bottleneck" 

of the problem.  

Summarized we have to decide between the 

solution time and deviation due to a too coarse 

grid. For lower   values we have to consider 

the error due to numerical dispersion since a 

greater amount of data points are affected. On 

the other hand for high   values, where 

numerical dispersion is negligible, we are not 

able to apply a too coarse mesh, because this 

leads to an overestimation of the resulted 

temperature. 
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