

EUROPE 2012

Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions Unit for Energy Efficient Buildings Institute for Construction and Materials Science

#### University of Innsbruck

#### Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

#### M. Bianchi Janetti, F. Ochs, R. Pfluger

michele.janetti@uibk.ac.at

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

M. Bianchi Janetti



Unit for Energy Efficient Buildings Institute for Construction and Materials Science

# University of Innsbruck

# Content

- Motivation
- Simulation Modell
- Results



Unit for Energy Efficient Buildings Institute for Construction and Materials Science

# University of Innsbruck

# **Motivation**



# EU Projekt 3ENCULT (WP3): Hygrothermal Simulation of Beam-Ends





Source: Passiv Haus Institut, Protokollband Nr.32, Architekt Fingerling

M. Bianchi Janetti



#### University of Innsbruck

**Beam-End: Hygrothermal Simulation** 



- Heat and mass diffusion inside the solid domains
- Heat and mass convection through the air gap



#### University of Innsbruck

# Heat and Mass Diffusion inside the Solid Domains PDE, Coefficient Form

$$\frac{\partial h}{\partial T}\frac{\partial T}{\partial t} + \frac{\partial h}{\partial T}\frac{\partial \varphi}{\partial t} + \nabla \cdot \left(-D_{e,T}\nabla T - D_{e,\varphi}\nabla\varphi\right) = 0 \qquad \bigtriangleup \begin{array}{c} \text{Energy} \\ \text{balance} \end{array}$$

 Temperature distribution: T(x,y,t)

| $\varphi$ | Relative humidity |
|-----------|-------------------|
| T         | Temperature       |
| u         | Water content     |
| h         | Specific enthalpy |



Unit for Energy Efficient Buildings Institute for Construction and Materials Science

#### University of Innsbruck

# Forced Convection in the Air Gap





#### University of Innsbruck

Forced Convection in the Air Gap: Governing Equations



| ρ | Vapor density           |
|---|-------------------------|
| h | Air enthalpy            |
| A | Cross section area      |
| L | Cross section perimeter |
| V | Air velocity            |

$$A\left(\frac{\partial \rho_{v}}{\partial t} + v\frac{\partial \rho_{v}}{\partial s}\right) = L\beta_{k}\left(p_{v,b} - p_{v}\right) \quad \diamondsuit \quad \text{Moisture balance}$$
$$A\left(\frac{\partial h}{\partial t} + v\frac{\partial h}{\partial s}\right) = L\alpha_{k}\left(T_{b} - T\right) \qquad \diamondsuit \quad \text{Energy balance}$$



Unit for Energy Efficient Buildings Institute for Construction and Materials Science

#### University of Innsbruck

#### Weak Form on the Boundary





Unit for Energy Efficient Buildings Institute for Construction and Materials Science

#### University of Innsbruck

# Comparison with Delphin **2D Modell without Convection**





Unit for Energy Efficient Buildings Institute for Construction and Materials Science

#### University of Innsbruck

Forced Convection in the Air Gap: Air Velocity in the Gap





Unit for Energy Efficient Buildings Institute for Construction and Materials Science

#### University of Innsbruck

# Forced Convection in the Air Gap: Results



M. Bianchi Janetti

UIBK - EB - 10.October 2012



# University of Innsbruck

# Outlook

#### Validation

- Numerical error analysis
- Experimental validation

#### **Further development**

Free convection inside air cavities(CFD)



Unit for Energy Efficient Buildings Institute for Construction and Materials Science

#### University of Innsbruck

# Thank you for your attention!

michele.janetti@uibk.ac.at

M. Bianchi Janetti