M參N▲X Monix Energy Solutions, Inc PENNSTATE Department of Electrical Engineering

freq(121)=13000 Multislice: Absolute pressure (Pa)

Understanding Logging-While-Drilling Transducers

With COMSOL Multiphysics[®] Software

Runkun Jiang

Lei Mei Xien Liu Hui Li Dr. & Prof. Qiming Zhang

COMSOL CONFERENCE 2014 BOSTON

Outline

- Background
- Motivation and Objective
- Transmitter Analysis
- o Displacement Resonance Frequency Response
- Acoustic Pressure and TVR Frequency Response
- o Acoustic Pressure Field Distribution and Directivity
- Receiver Analysis
- Receiving Sensitivity
- o Signal-to-Noise Ratio
- Summary

Background

Oil Drilling

Fig. 1. Schematic oil well structure [1].

Two major considerations:

- 1. Cost: A deep water well of duration of 100 days costs around US\$100 million [2].
- 2. Safety: The fatality rate among oil and gas workers is **eight times higher** than the all-industry rate of 3.2 deaths for every 100,000 workers [2].

Logging-While-Drilling

	MANNA MARA	-
	Traveltime	

Fig. 3. Monopole source LWD [4].

Material	Compressional Slowness Time ∆t _c , µs/m [µs/ft]	Shear Slowness Time ∆t _s , µs/m [µs/ft]
Steel	187 [57]	338 [103]
Sandstone	182 [55.5]	289 [88]
Limestone	155 [47.3]	290 [88.4]
Dolomite	143 [43.5]	236 [72]
Shale	200 to 300 [61 to 91]	varies
Freshwater	715 [218]	Not applicable
Brine	620 [189]	Not applicable

Fig. 4. Characteristic values for compressional wave slowness and shear wave slowness. **Real-time information [4]:**

- 1. Formation attributes that include pore pressure and overburden gradients, lithology and mechanical properties
- 2. Gas detection, fracture evaluation and seismic calibration

Motivation and Objective

Understanding and Improving

Fig. 6. Acoustic model of transmitter simulation.

Modules

1. Structural Mechanics >> Piezoelectric Devices >> Frequency Domain (pzd)

 $-\rho\omega^2\mathbf{u}-\nabla\cdot\boldsymbol{\sigma}=\mathbf{F}_{\mathrm{V}}e^{i\phi}$

 $\nabla \cdot \mathbf{D} = \rho_{\rm v}$

2. Acoustics >> Acoustic-Structure Interaction >> Acoustic-Piezoelectric Interaction >> Frequency Domain (acpz)

$$\nabla \cdot -\frac{1}{\rho_c} (\nabla p_t - \mathbf{q}_d) - \frac{k_{eq}^2 p_t}{\rho_c} = Q_n$$
$$p_t = p + p_b$$
$$k_{eq}^2 = \left(\frac{\omega}{c_c}\right)^2$$

Transmitter

Displacement Resonance Frequency Response

Fig. 7. Transmitter displacement resonance frequency response.

Definition:

 $\begin{cases} RD = sqrt ((pzd.uAmpX)^2 + (pzd.uAmpY)^2) \\ ZD = pzd.uAmpZ \\ TD = sqrt (RD^2 + ZD^2) \end{cases}$

Analysis:

- 1. ~ 5 kHz, resonance in half ring arc length
- 2. ~ 8 kHz, 10 kHz, resonance in height
- 3. ~ 11.5 kHz, resonance in PZT arc length
- 4. ~ 15 kHz, third harmonic resonance in half ring arc length

Transmitter

Acoustic Pressure Frequency Response

Fig. 8. Transmitter acoustic pressure frequency response.

Follows the trend of displacement resonance frequency response.

Fig. 9. Transmitting voltage response (TVR) to frequency.

 $TVR = 20*log10(p_{rms}/V_{rms}/1[\mu Pa/V])$

Transmitter

Spatial Acoustic Field Distribution

High pressure (> 10,000 Pa, yellow and red) area is of most interest.

Receiver

Receiving Sensitivity

Fig. 12. Receiving sensitivity of the current receiver design.

Peak Displacement Current $I_0 = \omega C V_0$

Receiving Voltage (RV)

RV = intop1(pzd.normJ)/(pzd.omega*C)

Receiving Sensitivity (RS)

 $RS = 20*log10(RV/(P*1 [V/\mu Pa]))$

Receiver

Signal-to-Noise Ratio

Dielectric loss noise for m receivers in series:

$$a_{m,S} = \frac{1}{\sqrt{m}} \times \sqrt{4kT\omega C_s} \tan \delta$$

Dielectric loss noise for m receivers in parallel:

$$_{n,P} = \sqrt{m} \times \sqrt{4kT\omega C_P} \tan \delta$$

i,

Fig. 13. Signal-to-noise ratio of the current receiver design.

Summary

- 1. Showed necessity of studying LWD transducers computationally for better understanding them and improving their designs
- 2. Established procedure and an example model (pzd and acpz) for studying transmitters
- ✓ Displacement Resonance Frequency Response
- ✓ Acoustic Pressure and TVR Frequency Response
- ✓ Acoustic Pressure Field Distribution and Directivity
- 3. Established procedure and an example model (pzd) for studying receivers
- ✓ Receiving Sensitivity
- ✓ Signal-to-Noise Ratio

References

- [1] <u>http://www.elsandcompany.com/howdrillingworks.htm</u>
- [2] http://en.wikipedia.org/wiki/Oil_well
- [3] <u>http://en.wikipedia.org/wiki/Well_logging</u>
- [4] Jeff Alford, *et al.*, Sonic Logging While Drilling Shear Answers, *Oilfield Review*, **Spring**, 4-15 (2012)
- [5] Darwin V. Ellis, and Julian M. Singer, *Well Logging for Earth Scientists*, Springer: Dordrecht, The Netherlands (2008)
- [6] Alain Brie, *et al.*, New Directions in Sonic Logging, *Oilfield Review*, **Spring**, 40-55 (1998)
- [7] J. L. Arroyo Franco, *et al.*, Sonic Investigation In and Around the Borehole, *Oilfield Review*, **Spring**, 14-33 (2006)
- [8] David Scheibner, *et. al.*, Slow Formation Shear from An LWD Tool: Quadrupole Inversion with A Gulf of Mexico Example, *SPWLA* 51st *Annual Logging Symposium*, **June 19-23**, 1-14 (2010)