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In this work we present the simulation of a micro-scale large
displacement compliant mechanism called the Tsang suspension. It
consist of a flat micro-plate anchored down by two springs on either
side, that can rotate out-of-plane and maintain its vertical assembly by
simple single-axis actuation.

Fig. 1 SEM image of fabricated and assembled SU-8 Tsang Suspension. 
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Tsang structures can be used in applications such as micro-mirrors [3],
free-space optics [4-6] and RF systems [7]. Out-of-plane electro thermal
actuators have been fabricated using the Tsang suspension, where an
actuator design was connected to the springs instead of the plate [8].
Tsang suspensions have also been used in thermal isolation of sensors
[9,10].

Fig. 2 Left: Electro-thermal micro-gripper for an out-of-plane mirror in Silicon [2]. Right: Several Tsang 
suspensions (Silicon and Polyimide) hold an elevated platform with a 2 axis thermal accelerometer [3] .
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Figure 3: Illustration of a Tsang suspension layout with 
Spring Length (SL) = 200µm, Spring Width (SW) = 

30µm, Number of Spring Beams (SB) = 4.

The Tsang suspension is composed of symmetric springs, an
unanchored platform, and the anchor pads (substrate), as shown in
Figure 3. An in-plane force applied to the bottom edge of the central
platform produces a complex deformation of the springs, which
produces the desired out-of-plane motion of the central platform.
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Figure 4: Representation of the parameters that were varied.

• The design parameters investigated in this work were: the spring
length (SL), the spring width (SW), and the number of spring beams
(SB).

• The notation {SL, SW, SB} will be used to refer to a specific design.
For example, the notation {300, 20, 6} refers to a Tsang suspension
with SL = 300 μm, SW = 20 μm, and SB = 6.
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In order to facilitate comparisons between various designs, a “standard
design” Tsang suspension was established with the parameters SL = 200
μm, SW = 30 μm, and SB = 4 {200, 30, 4}. This was used as the base point
for the various parameter variations investigated. The standard design
was chosen since experience with SU-8 fabricated devices, has
previously shown it as a reliable and stable design.

Figure 5: COMSOL model of a Tsang {200, 30, 4}
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• One of the challenges of Micro Electromecahnical
Systems (MEMS) is the direct measurement of their
mechanical properties, due to the fact that the
device’s dimensions are small, typically <1mm.

• We deal with a large displacement compliant
mechanism with torsion.

• Complex to model analytically.
• Common solution is to use nonlinear finite element

modeling.
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• The structures were parametrically modeled in COMSOL.
• Material and boundary conditions were selected to represent the

assembly process
• The highly nonlinear option was selected to contemplate the large

displacements of the structure.

Figure 6: Tsang suspension assembly in COMSOL.



9

Simulation Results

18 - September - 2014 King Abdullah University of Science and Technology

• Scanning Electron Miscroscopy (SEM) was use to capture the top-
view of the assembled structures.

• The simulation had good agreement with the experimental assembly.

Figure 7: Top view of simulation and SEM image. An example comparison angle, “theta-a” 
and “theta-b”. And displacement to vertical “d” are shown.
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• The direction of the spring reaction force changes as the rotation
angle of the plate increases.

• This reaction force initially attempts to restore the plate to its original
flat position

• A critical “toggle point‟ (change-over point) is reached, where the
reaction force begins to act towards the substrate. (self locking
mechanism)

Isometric View

Top View

Side View

King Abdullah University of Science and Technology

a) Angle of rotation versus lateral displacement of the Tsang suspension with SL = 200 μm, SW = 30 μm, 

SB = 4. b) Spring reaction force versus lateral displacement, with same design parameters.



11

Simulation Results

18 - September - 2014

King Abdullah University of Science and Technology

Figure 8: Graphs showing the effect of varying the different parameters as percentage variation 
of the standard design {200,30,4} 
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• The Tsang suspension and its design parameters
were studied using COMSOL Multiphysics.

• Changes in the reaction forces and displacement
required for assembly were determined.

• Clear trends are observed when varying design
parameters.

• This work provides greater insight into the
operation of Tsang suspensions and provides
designers with tools for designing their own
implementation.
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Thank You!
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