COMSOL CONFERENCE 2014 CAMBRIDGE

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H₂ Discharge

Lizhu Tong Keisoku Engineering System Co., Ltd., Japan September 18, 2014

Contents

Effect of small amount of H₂ added to Ar

Charge accumulation of the focus ring

DC-bias generated by the blocking capacitor

- RF discharge and CCP plasma
- The computational model
- Results
 - □ CCP discharge structure
 - □ Effect of the focus ring and blocking capacitor
 - □ Comparison with the discharge of pure argon
- Conclusions

RF discharge and CCP plasma (1)

- RF discharge is important in the plasma CVD for the fabrication of thin film or in the field of plasma chemistry. In microwave plasma, a high ionization rate exists so that the plasma density is high.
- In RF plasma processing, the discharge threshold voltage is low. The discharge can be easily sustained and the electrode can be covered with dielectric materials.
- Types of RF plasma reactors
 - □ Inductively coupled plasma (ICP)
 - Microwave plasma (MWP)
 - Capacitively coupled plasma (CCP)
 - Combined ICP/CCP reactor

RF discharge and CCP plasma (2)

Capacitively coupled radio-frequency discharges are still among the most powerful and flexible plasma reactors, widely used both in research and in industry.

One-dimensional model

RF discharge and CCP plasma (3)

Among the different modelling approaches available to characterize CCP discharges, two-dimensional fluid models provide a good compromise solution within acceptable calculation runtimes.

Two-dimensional model

Very high frequency (180 MHz)

SiO₂ n_e (Max = 2.65×10¹⁶ m⁻³) PRF O-Pump port (a) С 6(0) (Max = 35.7 V, Min = -4.76 V Ę 3.8 (b) (1) (Max = 67.19 V) Showerhead (c) 15 cm Min Max.

S. Rauf, K. Bera and K. Collins: Plasma Sources Sci. Technol. **17** (2008) 035003 (9pp)

A. Agarwal, S. Rauf and K. Collins: Plasma Sources Sci. Technol. **21** (2012) 055012 (12pp)

Y. Yang and M. J. Kushner: Plasma Sources Sci. Technol. **19** (2010) 055011 (17pp)

The computational model (1),

Model geometry

Computational conditions:

- Gases: Ar/H₂ mixtures (pure Ar, 1%H₂)
- Species: *e*⁻, Ar, H₂, Ar⁺, H⁺, H₂⁺, H₃⁺, ArH⁺, Ar^{*}, H, H(2*p*), H(2*s*)
- RF frequency: 13.56 MHz
- RF voltage: 200 V, applied to the bottom electrode
- Temperature: 300 K
- Gas pressure: 100 Pa
- Inter-electrode gap: 3.2 cm
- Blocking capacitor: 100 nF
- Focus ring: Silicon
- Dielectric: SiO₂

L		
	No.	Reaction
	1	$Ar + e^- \rightarrow Ar + e^-$
	2	$Ar + e^- \rightarrow Ar^* + e^-$
	3	$Ar + e^- \rightarrow Ar^+ + 2e^-$
	4	$Ar^* + e^- \rightarrow Ar^+ + 2e^-$
	5	$Ar^* + Ar^* \rightarrow Ar^+ + Ar + e^-$
	6	$Ar^* + Ar \rightarrow Ar + Ar$
	7	$H_2 + e^- \rightarrow H_2 + e^-$
	8	$H_2 + e^- \rightarrow H + H + e^-$
	9	$H_2 + e^- \rightarrow H + H(2s) + e^-$
	10	$H_2 + e^- \rightarrow H(2p) + H(2s) + e^-$
	11	$H_2 + e^- \rightarrow H_2^+ + 2e^-$
	12	$H_2 + e^- \rightarrow H + H^+ + 2e^-$
	13	$H_2^+ + e^- \rightarrow H^+ + H + e^-$
	14	$H_3^+ + e^- \rightarrow H_2 + H$
	15	$H_2 + H_2^+ \rightarrow H_3^+ + H$
	16	$H + e^- \rightarrow H + e^-$
	17	$H + e^- \rightarrow H(2p) + e^-$
	18	$H + e^- \rightarrow H(2s) + e^-$
	19	$H(2s) + e^- \rightarrow H(2p) + e^-$
	20	$H + e^- \rightarrow H^+ + 2e^-$
	21	$H(2s) + e^- \rightarrow H^+ + 2e^-$
	22	$H(2p) \rightarrow H + hv$
	23	$Ar^* + H_2 \rightarrow Ar + H + H$
	24	$Ar^+ + H_2 \rightarrow Ar + H_2^+$
	25	$Ar^+ + H_2 \rightarrow H + ArH^+$
	26	$ArH^+ + H_2 \rightarrow H_3^+ + Ar$
	27	$ArH^+ + e^- \rightarrow Ar + H$
	28	$Ar^* \rightarrow Ar \text{ (wall loss)}$
	29	$H_2^+ \rightarrow H_2$ (wall loss)
	30	$H_3^+ \xrightarrow{\mathbb{P}} H + H_2$ (wall loss)
	31	$H^+ \rightarrow H \text{ (wall loss)}$
	32	H $1/2H_2$ (wall loss)
	33	$H(2p) \rightarrow H \text{ (wall loss)}$
	34	$H(2s) \rightarrow H$ (wall loss)

Drift-diffusion equations for electrons

$$\frac{\partial}{\partial t}(n_e) + \nabla \cdot \Gamma_e = R_e \qquad \qquad \frac{\partial}{\partial t}(n_{\varepsilon}) + \nabla \cdot \Gamma_{\varepsilon} + \mathbf{E} \cdot \Gamma_e = R_{\varepsilon}$$
$$\Gamma_e = -n_e(\mu_e \mathbf{E}) - D_e \nabla n_e \qquad \qquad \Gamma_{\varepsilon} = -n_{\varepsilon}(\mu_{\varepsilon} \mathbf{E}) - D_{\varepsilon} \nabla n_{\varepsilon}$$

Source term

Source term

$$R_{e} = \sum_{j=1}^{M} x_{j} k_{j} N_{n} n_{e}$$

$$R_{\varepsilon} = \sum_{j=1}^{P} x_{j} k_{j} N_{n} n_{e} \Delta \varepsilon_{j}$$
Reaction rate
$$k_{j} = \gamma \int_{0}^{\infty} \varepsilon \sigma_{j}(\varepsilon) f(\varepsilon) d\varepsilon \qquad \gamma = (2q/m)^{1/2}$$

Cross sections for electron collisions

Boundary conditions:

$$-\mathbf{n} \cdot \Gamma_{e} = \left(\frac{1}{2}\nu_{e,\text{th}}n_{e}\right) - \sum_{p}\gamma_{p}(\Gamma_{p}\cdot\mathbf{n})$$
$$-\mathbf{n} \cdot \Gamma_{\varepsilon} = \left(\frac{5}{6}\nu_{e,\text{th}}n_{\varepsilon}\right) - \sum_{p}\varepsilon_{p}\gamma_{p}(\Gamma_{p}\cdot\mathbf{n})$$

The computational model (3)

Modified Maxwell-Stefan equation for ion and neutral species

$$\rho \frac{\partial}{\partial t} (w_k) + \rho (\mathbf{u} \cdot \nabla) w_k = \nabla \cdot \mathbf{j}_k + R_k$$

$$\exists z = \mathbf{i}_k = \rho \omega_k \mathbf{V}_k \qquad \mathbf{V}_k = \sum_{j=1}^Q \widetilde{D}_{kj} \mathbf{d}_k - \frac{D_k^T}{\rho \omega_k} \nabla lnT$$

$$\mathbf{d}_k = \frac{1}{cRT} \left[\nabla p_k - \omega_k \nabla p - \rho_k \mathbf{g}_k + \omega_k \sum_{j=1}^Q \rho_j \mathbf{g}_j \right]$$

Boundary conditions: $-\mathbf{n} \cdot \mathbf{j}_k = M_\omega R_k + M_\omega c_k Z \mu_k (\mathbf{E} \cdot \mathbf{n}) [Z_k \mu_k (\mathbf{E} \cdot \mathbf{n}) > 0]$

Poisson's equation

$$-\nabla \cdot \varepsilon_0 \varepsilon_r \nabla V = \rho \qquad \rho = q \left(\sum_{k=1}^N Z_k n_k - n_e \right)$$

Charge accumulation on the dielectric surface:

$$\mathbf{n} \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_{\mathrm{s}} \qquad \frac{d\rho_{\mathrm{s}}}{dt} = \mathbf{n} \cdot \mathbf{J}_i + \mathbf{n} \cdot \mathbf{J}_e$$

Results (1) CCP discharge structure in Ar/1%H₂ mixture

Time averaged Ar^+ density $(1/m^3)$ Time averaged electron density $(1/m^3)$ MULTIPHUSICS ▲ 4.18×10¹⁵ ▲ 1.26×10¹⁶ ×10¹⁵ Contour: 1×10^{16} /m³ ×10¹⁶ 0.5 -2 -2 -4 -4 E ▼ 3.55×10¹¹ ▼ 7.94×10⁶ Time averaged H_3^+ density $(1/m^3)$ Time averaged ArH^+ density $(1/m^3)$ COMIEL I ▲ 6.89×10¹⁵ ▲ 1.53×10¹⁵ ×10¹⁵ ×10¹⁵ 1.5 0.5 -2 -2 -4 E -4 ▼ 2.68×10¹² ▼ 1.95×10¹¹ Time averaged H_2^+ density $(1/m^3)$ Time averaged H^+ density $(1/m^3)$ COVISOL D MULTIPHUSICS ▲ 1.33×10¹⁴ ▲ 7.2×10¹¹ $\times 10^{14}$ $\times 10^{11}$ 0.5 -2 -2 -4 -4 L ▼ 4.45×10¹⁰ ▼ 4.93×10⁸

Electron and ion densities

Results (2) CCP discharge structure in Ar/1%H₂ mixture

Neutral species densities

15

20

25

▼ 1.39×10⁸

-4

0

5

10

Results (3) CCP discharge structure in Ar/1%H₂ mixture

Results (4)

CCP discharge structure in Ar/1%H₂ mixture

Electric potential

Results (5)

CCP discharge structure in Ar/1%H₂ mixture

Power deposition

Results (6)

Discharge structure around the focus ring

Electron density at r = 15 cm over the focus ring

Electric potential at r = 15 cm over the focus ring

Electron temperature at r = 15 cm over the focus ring

Results (7)

Effect of the focus ring and blocking capacitor

Electric potential along the surface of substrate and adjacent dielectrics

Power deposition around the focus ring

DC-bias generated by the blocking capacitor

Results (8)

CCP discharge structure in pure Ar

t = 1/4 T Surface: Capacitive power deposition (W/m³) 2 1 0 -1 12 14 16 18 V -2.86×10⁴

Electric potential at r = 15 cm over the focus ring

Electric potential along the surface of substrate and adjacent dielectrics

Results (9)

Comparison with the discharge in $Ar/1\%H_2$ and pure Ar

Pure Ar

 $Ar/1\%H_2$

Conclusions

- This paper presents the simulation results of low-pressure capacitively coupled RF plasmas in Ar/H₂.
- The addition of small amount of H₂ to Ar causes the electron density markedly decrease. The high electron density region is formed above the focus ring. The effect of the self DC-bias of the blocking capacitor is presented.
- It is found that with the increase of the amount of H₂ added to Ar, the density of metastable argon atoms is dramatically decreased. The pooling ionization rate due to the collisions among these atoms reduces down to 1.5% of that of pure argon.
- It could be concluded that the control of gas composition, focus ring and blocking capacitor would be very beneficial in finding the design parameters of RF CCP plasma reactors.

Thank you for your attention !

Questions & Comments ?