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Introduction Objectives

Fischer-Tropsch synthesis (FTS) is a highly exothermic polymerization reaction of
syngas (CO+H,) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of
paraffins, olefins and oxygenates, often known as syncrude. Multi-Tubular Fixed Bed
Reactors (MTFBR) and Slurry Bubble Column Reactors (SBCR) are widely employed for
FTS processes. The scale-up of MTFBR is complicated by the occurrence of hot spots in
both the tube and shell coolant regions. The emphasis of this research is to model a
wall-cooled fixed-bed reactor using COMSOL Multiphysics. This poster focuses on
comparing the performance of a fixed-bed reactor with cylindrical, spherical and hollow
cylindrical catalyst particle shapes by accounting for transport-kinetic interactions and
thermodynamic phenomena using micro kinetic rate expressions.

Kinetic and Thermodynamic Expressions
Modified Soave-Redlich-Kwong EOS
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« Employ a 1-D heterogeneous axial dispersion model to describe the specie and
energy balances in a wall-cooled fixed-bed reactor for the Fischer-Tropsch (FT)
reaction network using micro-kinetic rate expressions.

« Assess the role of catalyst particle shape on the reactor scale FT product
distribution.

 Incorporate a Modified Soave-Redlich-Kwong (MSRK) equation of state (EOS) into
the particle-scale and reactor-scale transport-kinetics model to more accurately
describe the vapor-liquid-equilibrium (VLE) behavior of the FT product
distribution.
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Boundary Conditions

1-D Reactor Domain At x = O (entrance), C,

i,tube

= Ciiner and at x = 1, dC,; ,./dx = O (zero flux)

i,tube

Sphere & Cylinder: At r = O (center of pellet), dC,/dx = 0 and at r=1, C, = C,
Hollow cylinder : At r = O (inner surface) and at r=1 (outer surface), C, = C,

i,tube

2-D Pellet Domain

i,tube

Key Results

Axial Temperature Profile Axial Temperature Profile

Process Variables and Catalyst Properties*

Reactor Length, L. 12 m

Tube Diameter, D, S cm

Pressure, P. 25 bar & 30 bar

inlet

Superficial Velocity, u 0.55 m/s
Overall Heat Transfer Coefficient, U ... 364 W/m?K
T ool 493 K
T, 493 K

inlet

Dimensions of cylindrical pellet L=3mmand R=1mm

Dimensions of spherical pellet R=1.5 mm

Dimensions of hollow cylindrical pellet L=3mm,R,=2mm &R, =1 mm

Density of pellet, p, 1.95 x 10° (gm/m3)

Porosity of pellet,e 0.51

Tortuosity, t 2.6

*Andreas Jess et al "

Modeling of Multi-Tubular Reactors for Fischer-Tropsch Synthesis”, Chem. Eng. Technol, Vol 32, No. 8, Pg 1164-1175, 2009
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Specie concentration in the catalyst is a function of
P v The porosity of the catalyst bed is constant

ly th dial dinate, i.e., C, = C;
only the radial coordinate, t.e., (; i(r) The radial heat, and mass transfer is neglected

Steady-state
y The bulk concentration of species is a function of

All catalyst particle shapes have the same material

only the axial coordinate
properties (g, 1, 1, k g)

Conclusions

e A 2-D catalyst pellet model coupled with a 1-D heterogeneous axial
dispersion reactor model can be used to analyze both particle-level and
reactor-level performance of different catalyst particle shapes.

« Micro kinetic rate equations, when coupled with intraparticle transport
effects and vapor-liquid equilibrium phenomena, captures the transport-
kinetic interactions and phase behavior for gas-phase FT catalysts on
both the particle-scale and reactor-scale.

« The CO conversion and intra-particle liquid to vapor (L/V) fraction
results suggest that hollow rings are preferred over spherical and
cylindrical particle shapes, but the magnitude of the hot spot is greater
for this shape. This may lead to a higher rate of catalyst deactivation,
reduce the catalyst mechanical strength and generate unsafe reactor
operating conditions.

Excerpt from the Proceedings of the 2015 COMSOL Conference in Boston
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