

Analysis of strain-induced Pockels effect in Silicon

C. L. Manganelli¹, P. Pintus¹,

C. Bonati², F. Di Pasquale¹

¹Scuola Superiore Sant'Anna, Pisa, Italy ²INFN - Sezione di Pisa, Pisa, Italy

Outline

- Electro-optic effect in crystal
- Strain-induced Pockels effect
- The proposed model and the overlap functions
- Conclusion

Nonlinear optics

Nonlinear effect can be mathematically described by the polarization vector

$$D_i(\mathbf{r},t) = \varepsilon_0 E_i(\mathbf{r},t) + P_i(\mathbf{r},t)$$

The general formula of the polarization vector is quite complicated*

$$P_{i}(\mathbf{r},t) = \varepsilon_{0} \int \chi_{ij}^{(1)}(\mathbf{r}-\mathbf{r'},t-t')E_{j}(\mathbf{r},t')d\mathbf{r'}dt$$

$$+ \varepsilon_{0} \int \chi_{ijk}^{(2)}(\mathbf{r}-\mathbf{r_{1}},t-t_{1},\mathbf{r}-\mathbf{r_{2}},t-t_{2})E_{j}(\mathbf{r_{1}},t_{1})E_{k}(\mathbf{r_{2}},t_{2})d\mathbf{r_{1}}dt_{1}d\mathbf{r_{2}}dt_{2}$$

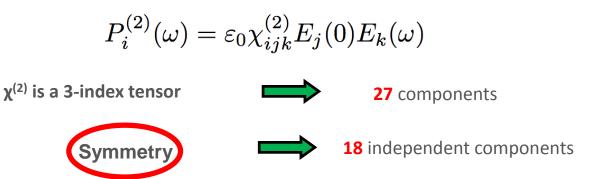
$$+ \varepsilon_{0} \int \chi_{ijkl}^{(3)}(\mathbf{r}-\mathbf{r_{1}},t-t_{1},\mathbf{r}-\mathbf{r_{2}},t-t_{2},\mathbf{r}-\mathbf{r_{3}},t-t_{3})E_{j}(\mathbf{r_{1}},t_{1})E_{k}(\mathbf{r_{2}},t_{2})E_{l}(\mathbf{r_{3}},t_{3})d\mathbf{r_{1}}dt_{1}d\mathbf{r_{2}}dt_{2}d\mathbf{r_{3}}dt_{3} + \dots$$

For a local medium, in the frequency domain we have

$$P_i(\boldsymbol{r},\omega) = \varepsilon_0 \, \chi^{(1)}_{ij}(\boldsymbol{r},\omega) E_j(\boldsymbol{r},\omega) \qquad \qquad \text{Linear term (refractive index)} \\ + \varepsilon_0 \, \chi^{(2)}_{ijk}(\boldsymbol{r},\omega_1,\boldsymbol{r},\omega_2) E_j(\boldsymbol{r},\omega_1) E_k(\boldsymbol{r},\omega_2) \qquad \qquad \text{Quadratic term (Pockels effect, SHG)} \\ + \varepsilon_0 \, \chi^{(3)}_{ijkl}(\boldsymbol{r},\omega_1,\boldsymbol{r},\omega_2,\boldsymbol{r},\omega_3) E_j(\boldsymbol{r},\omega_1) E_k(\boldsymbol{r},\omega_2) E_l(\boldsymbol{r},\omega_3) \, \text{Cubic term (Kerr effect, FWM)} \\ + \dots$$

Electro-optic effect in crystal

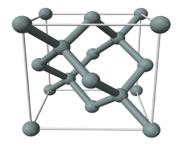
The quadratic nonlinear susceptibility is responsible of the Pockels effect



Our goals

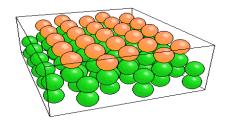
1.χ⁽²⁾ as a function of the strain gradient tensor
 2.Theory and optimization of nonlinear effects in silicon waveguides

Centrosymmetric crystal and deformations



Silicon fundamental cell

Surface interface



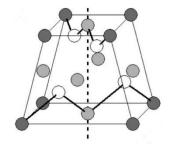
or

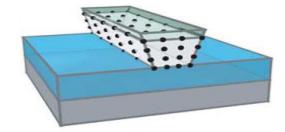
Inversion point

for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z).

No native x⁽²⁾

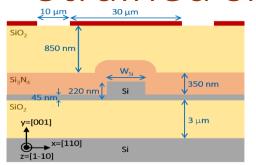
Non uniform strain

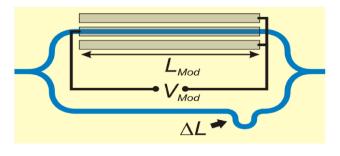


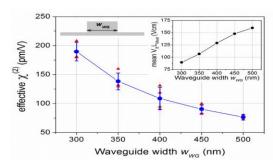


- Centrosymmetry is broken
- $\chi^{(2)}$ appears

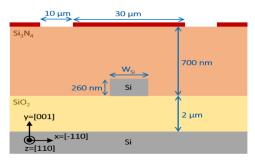
Strained silicon: state of the art

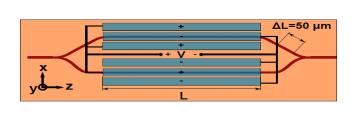


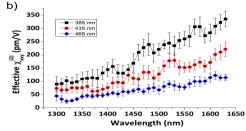




B. Chmielak et al., "Pockels effect based fully integrated, strained silicon electro-optic modulator," Opt. Exp. **19**, pp. 17212–17219, 2011. B. Chmielak et al., "Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides," Opt. Exp. **21**, pp. 25324–25332, 2013.







P. Damas et al., "Wavelength dependence of Pockels effect in strained silicon waveguides," Opt. Express 22, pp. 22095–22100, 2014.

$\chi^{(2)}$ as a function of the strain gradient tensor

Approximation of $\chi^{(2)}$ with its Taylor series with respect to the strain tensor and strain gradient tensor

Strain tensor

 $arepsilon_{lm}$

Strain gradient tensor $\zeta_{lmn} = \frac{\varepsilon_{lm}}{x_n}$

$$\chi_{ijk}^{(2)}\left(\boldsymbol{\varepsilon},\boldsymbol{\zeta}\right) = \chi_{ijk}^{(2)}\left(\boldsymbol{\varepsilon} = 0, \boldsymbol{\zeta} = 0\right) + \sum_{l,m} \frac{\partial \chi_{ijk}^{(2)}}{\partial \varepsilon_{lm}} \varepsilon_{lm} + \sum_{l,m,n} \frac{\partial \chi_{ijk}^{(2)}}{\partial \zeta_{lmn}} \zeta_{lmn} + o\left(\max_{l,m,n} \{|\varepsilon_{lm}|, |\zeta_{lmn}|\}\right)$$

Vanishes as a 5 index tensor and as all the Tensors with odd number of indices

$$T_{ijk\alpha\beta\gamma} = \left. rac{\partial \chi^{(2)}_{ijk}}{\partial \zeta_{\alpha\beta\gamma}} \right|_{\varepsilon=0}$$
 6-index tensor \Longrightarrow Survives! 36=729 components!

Symmetries

Symmetry of the strain tensor

$$\varepsilon_{\alpha\beta} = \varepsilon_{\beta\alpha} \quad \Longrightarrow \quad \zeta_{\alpha\beta\gamma} = \zeta_{\beta\alpha\gamma}$$

Symmetry of the Pockels effect

$$\chi^{(2)}_{ijk}(\omega,0)=\chi^{(2)}_{ikj}(0,\omega)\;, \ \chi^{(2)}_{ijk}(\omega,0)=\chi^{(2)}_{ijk}(-\omega,0)=\chi^{(2)}_{jik}(\omega,0)\;,$$
 Lossless condition

48 symmetry operations compatible with cubic lattice of silicon

$$\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}, \quad \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & 0 & \pm 1 \\ 0 & \pm 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & \pm 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}, \quad \text{Due to symmetries,}$$
 only 15 components of $\chi^{(2)}$
$$\begin{pmatrix} 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \\ \pm 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & \pm 1 \\ \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & \pm 1 \\ 0 & \pm 1 & 0 \\ \pm 1 & 0 & 0 \end{pmatrix}.$$
 are independent!

What can we measure? ...the effective susceptibility

The effective index can be experimentally measured

$$\Delta n^{\text{eff}} = \frac{\epsilon_0 c}{N} \int_A E_i^* \chi_{ijk}^{(2)}(\omega, 0) E_j E_k^{dc} \, dA, \qquad N = \frac{1}{2} \int_{A_{\infty}} (\mathbf{E} \times \mathbf{H}^* + \mathbf{E}^* \times \mathbf{H}) \cdot \mathbf{i}_z \, dA.$$

The effective susceptibility vector can be defined as $\qquad \chi_k^{
m eff} E_k^{dc} = n^{
m eff} \Delta n^{
m eff} \; ,$

$$\chi_k^{\mathrm{eff}}(\omega,0) = T_{ijk\alpha\beta\gamma}(\omega,0) \cdot n^{\mathrm{eff}} \underbrace{\left(\frac{\epsilon_0 c}{N}\right)}_{\mathbf{A}} E_i^*(\mathbf{x}) \zeta_{\alpha\beta\gamma}(\mathbf{x}) E_j(\mathbf{x}) \, \mathrm{d}A \; .$$

$$\mathbf{measured}$$

$$\mathbf{measured}$$

$$\mathbf{measured}$$

$$\mathbf{computed}$$

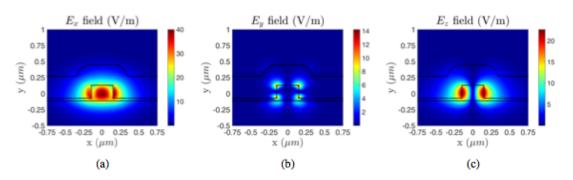
If only $E_v \neq 0$, we can write in a more compact way

$$\chi_y^{\text{eff}}(\omega) = c_i o_i(\omega) ,$$

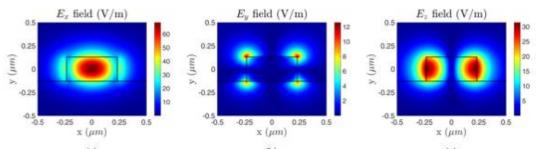
 c_i can be derived from the experimental results.

$$n^2 = \epsilon/\epsilon_0 \; , \qquad \epsilon = \epsilon_0 \left[1 + \chi^{(1)} + 2\chi^{(2)} E^{dc} \right] \; .$$

COMSOL modal analysis



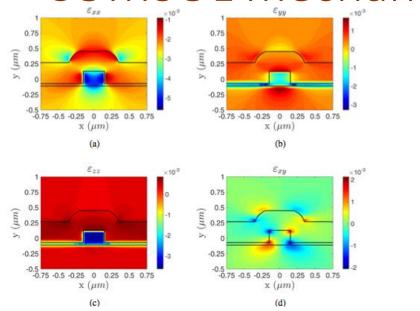
B. Chmielak et al., Opt. Express **19**, pp. 17212–17219, 2011.



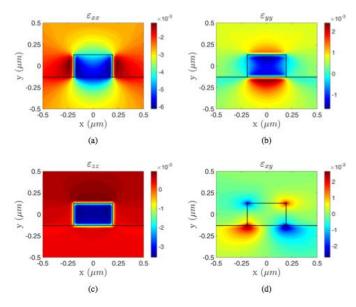
P. Damas et al., Opt. Express **22**, pp. 22095–22100, 2014.

The waveguides show a single mode behavior but E_{z} and E_{ν} components are not negligible compared to E_{ν} component and thus the mode is clearly not purely transverse electric. The high value of E_z is due to the high index step of the waveguide.

COMSOL mechanical deformation



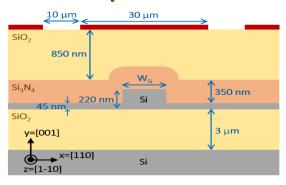
B. Chmielak et al., Opt. Express 19, 2011.



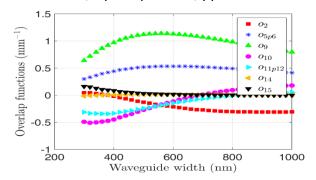
P. Damas et al., Opt. Express 22,2014.

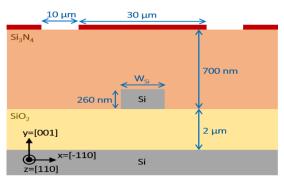
Silicon anisotropy described by orthotropic model and initial stress of 1 GPa

Overlap function $\chi_y^{ ext{eff}} = c_i\,o_i$

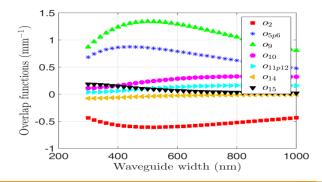


- B. Chmielak et al., Opt. Express 19, pp. 17212–17219, 2011.
- B. Chmielak et al., Opt. Express 21, pp. 25324-25332, 2013.





P. Damas et al., Opt. Express 22, pp. 22095–22100, 2014.



Conclusion

- ✓ A simple model is proposed for the Pockels effect
- ✓ Design and optimization of strained silicon based device
- ✓ Other second order effect in strained silicon (e.g., *Second Harmonic Generation*) can be modelled
- ✓ Further investigations and experimental results are needed to evaluate all 15 coefficients
- ✓ Paper accepted on Optics Express and on arxive (http://arxiv.org/abs/1507.06589)

