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Abstract

Present paper gives a comparison of the Maxwell, Up-
perconvected Maxwell and the Oldroyd-B model for
the calculation of dissipation in high shear-rate cases.
Useage of viscodampers in the automotive industry
is the most common. There is a good scope of the
computing this power in the case of Newtonian flu-
ids. When a polymeric liquid is considered that part
of energy that is irreversible can not be calculated
as Pdiss. = τ : d. For fluids where the separation
into a solvent and a polymer part is not available
the deformation gradient tensor must be separated
into two parts. One part consists of only the elastic
deformation while the other is the non-elastic. This
paper shows this separation using the three-element
Maxwell and the UCM model. The steady state tem-
perature distribution of a damper then is validated
with measurement.
Keywords: fluid damper, dissipation.

1 Introduction

Present paper gives a comparison of the Uppercon-
vected Maxwell (UCM) and the Oldroyd-B model
for the calculation of dissipation in high shear-rate
cases of viscodampers. When polymeric liquid is
considered that part of energy that is irreversible
can not be calculated as Pdiss. = τ : d, where
d = 1

2

(
∇v +∇vT

)
. The calculation is well known

[1], [2],[3], [4],[5], [6], [7], [8], [9], [10]. This method is
quite simple for Newtonian fluids and for the Maxwell
model. For polymeric liquids, whose stress cannot
be separated into a solvent and a liquid part, this
computation leads to high errors if the dissipation
is calculated as given in (9). The Maxwell model is
widely used by engineers because of its simplicity. On
the other hand this can not be used as a constitutive
equation because it is not objective.For fluids where
the separation into a solvent and a polymer part is
not available the deformation gradient tensor must
be separated into two parts.

2 Use of COMSOL
Multiphysics c©

To implement the UCM model into the FE model
custom PDEs were used. In order not to rewrite
the equation of fluid flow some parts have been
eliminated and others have been added. The non-
newtonian material model is attached as a source
term. Due to high shear rates heat generation plays
an important role in the modeling process. This cou-
pling is easily achieved using COMSOL Multiphysics.
Both CFD and heat transfer is considered and the
PDE interface is also used.

1. Continuity equation

∇u = 0, (1)

where ∇ denotes the divergence operator.

2. Equation of motion

∂

∂t
ρu = −∇ρuu−∇π + ρg, (2)

where π is total stress tensor,

3. Energy equation

∂

∂t
ρU = −∇ρUu−∇q− π : ∇u, (3)

where ρ denotes density, U is the internal energy
per mass unit, q is the heat flux and the last term
is dissipated power.
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The equation of an equally linear and elastic fluid is
the Maxwell model

τ + λ
.
τ = −2µ0d, (4)

where λ = µ0

G is the time constant (relaxation time)
and µ0 is the zero shear rate viscosity. This model
is not suitable to use as a constitutive equation so
the Upper Convected Maxwell (UCM) and Oldroyd-
B model are introduced

τ + λ
O
τ = −2µ0d, (5)

τ+
µ0

G

(
∂τ

∂t
+ u.∇τ − (∇u)T τ − τ (∇u)

)
= −2µ0d.

(6)
The equation of the Oldroy-B fluid is

τ + λ
O
τ = −2µ0

(
d + λ1

O
d

)
, (7)

where λ1 is the retardation time. The problem intro-
duced in this paper used cylindrical coordinate sys-
tem. Due to the axial symmetry the following sim-
plification can be taken

∂

∂ϕ
≡ 0. (8)

For those polymers that can be separated to a sol-
vent and a polymer section, such that µ = µs + µp
holds, the dissipation can be calculated as

Pdiss. = τ : d. (9)

The original calculation leads to high errors if the
dissipated power is needed.

The Maxwell model cannot be used in this way.
The material law of such fluid cannot be arrenged
for the stress τ in a closed form so it cannot be in-
serted into Eq. (9). So the other way is to try to
calculate the anoter term in Eq. (9) to calculate the
plastic deformation. Different material models can
be built by springs and dashpots connected parallel
and/or in series. If this model contains dashpots and
not only springs the calculation of the viscous dissi-
pation needs only those deformations that occur in

the dashpots. The deformation of the springs are re-
versible. So the rate of strain tensor should be sepa-
rated. Suppose that the deformation gradient tensor
d can be written as

d =
.
γd +

.
γs, (10)

where
.
γd is the rate of strain tensor of the dashpot

and
.
γs is the rate of strain of the springs.

Namely the rate of strain tensor can be separated
into the sum of two tensors. One describes the de-
formation of the elastic parts of the model while the
other the plastic deformation. By definition, analo-
gous to Hooke’s law in strength of materials the re-
versible part is

.
γs :=

1

G

∂τ

∂t
, (11)

D
Dt

α =
D

Dt
α +

1

2
(β ·α−α · β) , (12)

where β = ∇u− (∇u)
T

and α is arbitrary tensor.

Thus for a fluid with arbitrary material constitu-
tive equation the viscous dissipation can be calcu-
lated as

Pdiss. = τ :
1

2
γ̇d, (13)

where

γ̇d =
1

2

(
∇v +∇vT

)
− 1

G

(
∂τ

∂t
+ v∇τ

)
. (14)

3 Finite element implementa-
tion

3.1 The weak term

In the present study, we consider an UCM model with
three relaxation times given in Table 1.

For the numerical calculations we use the standard
Galerkin finite element discretisation of the Oldroyd-
B equation with least squares-type weak stabilization
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terms Behr et al. The stabilization terms defined as

τmom =

((
2||uh||
h

)2

+

(
4µ

ρh

)2
)
, (15)

τcont = ||uh||hζ (Ree) , (16)

τcons =

(
1 +

(
2λ||uh||

h

)2

+
(
λ||uh||

)2)0.5

, (17)

where the element Reynolds number and the smooth-
ing function is given by

Ree =
ρ||uh||h

2µ
, (18)

ζ (Ree) =

{
Re
3 0 ≤ Re ≤ 3

1 Re ≥ 3
, (19)

where h is the element length.

3.2 The computational domain

For the problem presented here both Dirichlet and
Neumann boundary conditions are used as

u = g on Γg, (20)

nτ = h on Γh, (21)

where Γg,Γh are subparts of the domain.
The main purpose of this calculation is to vali-

date the calculation of the dissipation for the material
models. The calculation of viscous dissipation like a
Newtonian fluid leads to errors. Only the dashpots in
the model gives irreversible energy. So during FEM
calculations only the irreversible part of the material
model is used for the dissipation. In this section the
new method is compared with results from measure-
ments. The parameters are given in Tab. 1.

Table 1: Parameters of the three element material
model

parameter value parameter value
G1 8053.1 [Pa] µ1 360910[Pas]
G2 33477 [Pa] µ2 180670[Pas]
G3 64353[Pa] µ2 41649[Pas]
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(a) Dissipated power for
Maxwell model.

0.1 0.2 0.3 0.4 0.5
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(b) Dissipated power for UCM
model.

Figure 1: Comparison of the analytical calculations
for the material models.

4 Results

In Fig. 1a and 1b the comparison of the analytical cal-
culations can be seen for the domain given in Fig. ??.
In Fig. 1a the dissipated power for Maxwell model
calculated both as Newtonian (see dashed line) and
non-Newtonian (see bold line) fluid can be seen. One
can see that this method gives much lower values for
the dissipated power. In Fig. 1b the dissipated power
for UCM model calculated both as Newtonian and
non-Newtonian fluid can be seen. Dashed line indi-
cates the case when the dissipated power is calculated
as non-Newtonian fluid. Solid line shows the case
when it is calculated as Newtonian fluid. It gives a
bit higher values than the Maxwell model computed
with the same methodology. It can be observed that
after the initial transient part the viscous dissipation
reaches a steady-state.

In Fig. 2a the contours of the dissipation can be
seen as a function of time (horizontal axis) and radial
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distance (vertical distance) for the UCM model. In
Fig. 2b the same result can be seen for the Oldroyd-B
fluid. Both material models give similar results, spe-
cially at higher radius values. Due small difference in
the dissipation and for simpler formula, in the finite
element calculations the UCM model is applied.

(a) Dissipated power contours
for UCM model.

(b) Dissipated power for
Oldroyd-B model.

Figure 2: Comparison of the contours for the material
models.

For the calculations the original 3D device was sim-
plified to an axial symmetric model. The inner chan-
nel containing the fluid was also simplified. In Figure
4 the viscous dissipation can be seen. It shows that
the energy increases towards the radius. In Figure 5
the dissipation can be seen as a function of time at
the point marked with +. This is marked with red
line. For the non-isothermal calculation the averaged
value is used as an internal heat source as a function
of radius

Pa. (r) =
1

T

∫ t′

0

Pdiss. (r) dt.

In Figure 6 the simulation results are compared to
the data from measurement. The measuring points

rotating outer rim

damper fluid

inner ring

radial direction

axis of
rotation

Figure 3: Schematics of a fluid damper and the finite
element model.

+

point

Figure 4: Power contours at a specific time. The
specific point is marked with +.

Figure 5: The viscous dissipation at the specific
point.
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Figure 6: Temperature comparison along the outer
face of the damper. The + marks the computed tem-
perature using the Maxwell model, × marks the data
from Oldroyd-B model and© sign is the result if the
fluid model is UCM.

of the damper are on the outer face of it. The re-
sults are correlated to the temperature values set by
measurement, this is the reference Tref.. One can
see that both the UCM and Oldroyd-B models give
very close results to the reference data. As expected
the Maxwell model gives significantly higher values,
because this is not suitable material model for com-
puting the dissipation in damper fluids. For ease of
use the UCM model is a good choice in sense of engi-
neering calculations. Especially in the computation
of heat transfer computations.

5 Conclusion

In this paper non-Newtonian material models were
compared for the calculation of viscous dissipation.
In COMSOL Multiphysics equation based modelling
is available to use custom equations. After coefficient
matching the non-linear material models can be eas-
ily implemented into the software. In the studied
device more than one physics is needed to properly
investigate the effects of different materials. Coupling
these is just a few clicks and switching between the
material models needs minimal effort.

References

[1] P. C. F.T. Pinho, Fully-developed heat transfer
in annuli for viscoelastic fluids with viscous dis-
sipation, Journal of Non-Newtonian Fluid Me-
chanics 138 (2006.) 7–21.

[2] G. M. K. L.E. Becker, The stability of viscoelas-
tic creeping plane shear flows with viscous heat-
ing, Journal of Non-Newtonian Fluid Mechanics
92 (2000.) 109–133.

[3] K. R. I.J. Rao, On a new interpretation of the
classical maxwell model, Mechanics Research
Communications 34 (2007.) 509–514.

[4] Y. L. G.H. Wu, Creeping flow of a polymeric
liquid passing over a transverse slot with viscous
dissipation, International Journal of Heat and
Mass Transfer 45 (2002.) 4703–4711.

[5] T. S. Ganbat Davaa, S. Momoki, Effect of vis-
cous dissipation on fully developed heat trans-
fer of non-newtonian fluids in plane laminar
poiseuille-couette flow, International Communi-
cations in Heat and Mass Transfer 31 (2004.)
663–672.

[6] Y. S. Ryoichi Chiba, Masaaki Izumi, An analyt-
ical solution to non-axisymmetric heat transfer
with viscous dissipation for non-newtonian flu-
ids in laminar forced flow, Archive of Applied
Mechanics 78 (2008.) 61–74.

[7] P. J. Oliveira, A traceless stress tensor formu-
lation for viscoelastic uid ow, Journal of Non-
Newtonian Fluid Mechanics 95 (2000.) 55–65.

[8] E. N. L. R. Byron Bird, Warren E. Stew-
art, Transport Phenomena, 2nd Edition, Wiley,
2006.

[9] O. H. R. Byron Bird, Dynamics of Poly-
meric Liquids, 2nd Edition, Vol. 1-2., Wiley-
Interscience, 1987.

[10] F. A. Morrison, Understanding Rheology, 1st
Edition, Oxford University Press, 2001.

5

Excerpt from the Proceedings of the 2015 COMSOL Conference in Grenoble


	Introduction
	Use of COMSOL Multiphysics©
	Finite element implementation
	The weak term
	The computational domain

	Results
	Conclusion



