TATA CONSULTANCY SERVICES Experience certainty.

Modeling of straight jet dynamics in electrospinning of polymer nanofibers

Rohan Pandya¹, Kumar Akash², Venkataramana Runkana¹

¹Tata Research Development and Design Centre, Tata Consultancy Services, Pune ²Department of Chemical Engineering, Indian Institute of Technology, Delhi

Introduction

- Nanofibers are produced by solidification of a polymer solution stretched by an electric field.
- Properties:
 - High surface area per unit mass,
 - Very high porosity,
 - Layer thinness,
 - High permeability,
 - Low basic weight,
- Applications:
 - wound dressing,
 - drug or gene delivery vehicles, biosensors,
 - fuel cell membranes and electronics,
 - tissue-engineering processes.

TATA CONSULTANCY SERVICES Experience certainty.

Mathematical modeling in electrospinning process of nanofibers: a detailed review- S. Rafiei, S. Maghsoodloo, B. Noroozi, Mottaghitalab and A. K. Haghi(2012) 2

- Build a mathematical model to predict the radius of a straight jet electrospinning process.
- Validate the model for
 - Newtonian fluid
 - Non Newtonian fluid
 - Viscoelastic fluid
- Study the dependence of radius on various working parameters.

Basic Assumptions

- Slender body theory
 - $R(z) \propto z^{-1/4}$
 - R + 4zR' = 0
- Leaky dielectric model
 - Free charge which accumulates on the interface modifies the field.
 - Viscous flow develops stresses balance the tangential components of the field acting on interface charge
- Laminar flow
- Electric field inside the fibre is being solved

4

Mathematical Model

- Mass conservation equation: $-\pi R^2 v = Q$
- charge conservation equation: $-\pi R^2 KE + 2\pi R \nu \sigma = I$
- Electric Field equation:

$$-E(z) = E_{\infty}(z) - ln\chi(\frac{1}{\overline{\epsilon}}\frac{d(\sigma R)}{dz} - \frac{\beta}{2}\frac{d^2(ER^2)}{dz^2})$$

FIG. 1. Momentum balance on a short section of the jet.

Momentum Equation:

$$-\frac{d(\pi R^2 \rho v^2)}{dz} = \pi R^2 \rho g + \frac{d[\pi R^2(-p + \tau_{zz})]}{dz} + \frac{\gamma}{R} 2\pi R R' + 2\pi R (t_t^e - t_n^e R')$$

TATA CONSULTANCY SERVICES Experience certainty. J.J. Feng, Phys. Fluids 14 (2002) 3912–3926 5

Scaling

Characteristic Scales

Length: R_0 Velocity: $v_0 = Q/(\rho R_0^2)$ Electric field: $E_0 = I/(\rho R_0^2 K)$ Surface charge density: $\sigma_0 = \overline{\epsilon} E_0$ Stress: $\tau_0 = \eta_0 v_0 / R_0$

Dimensionless groups:

Mathematical Model (non-dimensional)

Mass conservation equation:

 $-R^2 v = 1$

- Charge conservation equation:
 - $-ER^2 + PeRv\sigma = 1$
- Electric Field equation:

$$-E = E_{\infty} - ln\chi(\frac{d(\sigma R)}{dz} - \frac{\beta}{2}\frac{d^2(ER^2)}{dz^2})$$

Momentum Equation:

$$-\nu\nu' = \frac{1}{Fr} + \frac{T'}{ReR^2} + \frac{R'}{WeR^2} + \varepsilon(\sigma\sigma' + \beta EE' + \frac{2E\sigma}{R})$$

Tensile Force,

 $T = 3\eta R^2 v'$, for Newtonian and Non-Newtonian

 $T = T'_p + 3\eta(1 - r_\eta)R^2\nu'$, for viscoelastic fluids.

Polymer Stress Tensor Equation (Giesekus viscoelastic fluid)

$$\tau_{prr} + \lambda(v\tau'_{prr} + v'\tau_{prr}) + \alpha \frac{\lambda}{\eta_p} \tau_{prr}^2 = -\eta_p v'$$

$$\tau_{pzz} + \lambda(v\tau'_{pzz} - 2v'\tau_{pzz}) + \alpha \frac{\lambda}{\eta_p} \tau_{pzz}^2 = 2\eta_p v'$$

Non-dimensionalised form

$$\tau_{prr} + De(v\tau'_{prr} + v'\tau_{prr}) + \alpha \frac{De}{\eta_p}\tau_{prr}^2 = -r_\eta v'$$

$$\tau_{pzz} + De(v\tau'_{pzz} - 2v'\tau_{prr}) + \alpha \frac{De}{\eta_p}\tau_{pzz}^2 = 2r_\eta v'$$

Boundary Conditions

Model is solved for

- 1-D geometry
- R is converted to v using the mass balance equation and then solved
- Mathematics ODE solver is used

TATA CONSULTANCY SERVICES

Experience certainty.

Results

- Experimental data of Hohman *et al.* for a glycerol jet
 - R0=0.08 cm, L=56 cm, Q=1 mL/min, E∞= 5 kV/cm, I=170 nA, kinematic viscosity=514.9 cm2/s, K=50.01 mS/cm
- The parameters of Hohman *et al.*:
 - X=75, B=45.5, Re=4.451*10⁻³, We=1.099*10⁻³, Fr=8.755*10⁻³, Pe=1.835310⁻⁴, ε =0.7311, $E\infty$ =5.914, K=0.01 µS/cm.
- C) All parameters as above with a higher conductivity *K*=4.8*10⁻⁶ S/m, corresponding to Pe=3.823*10⁻⁵, ε=3.173*10⁻², and E∞=28.32.

TATA CONSULTANCY SERVICES Experience certainty.

Hohman et al, "Electrospinning and electrically forced jets: II. Applications," Phys. Fluids **13**, 2221 (2001).

Giesekus model - Validation against Experimental Data

- Experimental data of Doshi et al. for a 4% PEO solution compared against our model.
- Electric field ($E^{\infty} = 40 \text{ kVm}-1$)
- Nozzle radius (R0 = 45 m)
- Iength of the straight jet (L = 30 mm).
- The density $\rho = 1.2 \times 103$ kgm-3
- dielectric constant, $\epsilon / \overline{\epsilon} = 42.7$
- Viscosity, η₀ = 12.5 P;
- surface tension, $\gamma = 76.6$ dyn cm-1
- Conductivity, $K = 4.902 \times 10-3 \Omega 1 m 1$.
- The solvent viscosity is $\eta_s = 10-2$ poise for water
- I = 0.12 A
- Q = 10 μl min-1.

Giesekus Model-Variation with viscosity ratio (r_n)

Radius vs z

Line Graph: Dependent variable R (1)

TATA CONSULTANCY SERVICES Experience certainty.

Dependent variable R (1)

Giesekus Model-Variation with volumetric flow rate (Q)

Conclusion

- A mathematical model was built and validated against experimental data for Newtonian jet and Feng's model for Non- Newtonian jets.
- The model was validated against experimental data for Giesekus model and extended to Oldroyd-B model.
- The model was extended for polymer solution with Non-Newtonian solvent.
- The dependence of the process on different working and material parameters was studied.

THANK YOU