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Motivation

 Diagnostic procedures essential for proper diagnosis of medical conditions

 X-rays, CT-Scan, MRI etc.

 Employ harmful electromagnetic radiations

 Safe alternative: optical tomography techniques

 Employ infrared light

 Biological tissues – turbid media

 Scattering mean free path = 0.1 mm

 Absorption mean free path = 10 – 100 mm



Diffuse Photon Density Waves (DPDW)

 Frequency domain optical tomography technique based on diffusive 

propagation of light

 Employs intensity modulated light sources

 Determine the optical properties of tissues 

 Important for many biomedical applications. 

 Observe and analyze cutaneous and subcutaneous tissue damage

 Diagnosis and treatment of pressure ulcers, skin and tissue injuries, wounds and 

burns. 

 Our simulation produced results that are two orders of magnitude faster 

than the equivalent Monte Carlo method of light transport in tissues.



Light inside biological tissues

 Biological tissues

 Absorption Coefficient μa

 Scattering Coefficient μs

 Anisotropy Factor g

 Radiative transfer equation (RTE)

 Diffusion equation (DE)

 Monte Carlo method



Radiative transfer equation

 Radiative transfer equation (RTE)

 Light radiance 

 Light power per unit area travelling in the  𝑠 direction at position  𝑟and time t
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Radiative transfer equation

 Photon fluence rate

 Total power per unit area moving radially outward from the infinitesimal volume 

element at position  𝑟 and time t

 Photon flux

 Power per unit area travelling in the  𝑠 direction at position  𝑟 and time t
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Diffusion equation

 Diffusion equation

 Photon diffusion coefficient

 Diffusion equation for DPDW (Helmholtz equation)
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Simulation Model

 
(a) (b)

Figure 1. (a) Geometrical model of the tissue (b) Tissue cross-section.



DPDW phase against source – detector 

separation
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(b) 2% concentration of 
Intralipid aqueous solution

Figure 2. DPDW phase against source – detector separations for two different concentrations 

of aqueous intralipid solution

(a) 0.5% concentration of 
Intralipid aqueous solution



DPDW intensity attenuation against 

source – detector separation
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Figure 3. DPDW intensity attenuation against source – detector separation

0.5% concentration of 
Intralipid aqueous solution



Thank You

 Questions?

syedabdulmannan.kirm@ndsu.edu

S.A.M. Kirmani


