Simulating Hodgkin-Huxley-like Excitation using Comsol Multiphysics

Martinek^{1,2}, Stickler², Reichel¹ and Rattay²

¹ Department of Biomedical Engineering and Environmental Management, University of Applied Sciences Technikum Wien, Vienna, Austria ² Institute for Analysis and Scientific Computing, Vienna University of Technology, Austria

Goal of Simulation - Clinical View

Large Surface Electrodes

Long Impulses

Goal of Simulation - Modeling View

Model of Single Fiber Hodgkin-Huxley

- Electrical Field Distribution
- Coupling
 - Reaction of fiber in external Electrical Field

History of Hodgkin-Huxley Model

 Hodgkin and Huxley experimented on squid giant axon and explored how the Action Potential is produced in the (nerve) fiber (Journal of Physiology, 1952)

 Hodgkin and Huxley awarded the 1963 Nobel Prize for the model

The muscle fiber - membrane

1D muscle fiber model

1D muscle fiber

2D model

Surface electrodes (Dirichlet Boundary Conditions) Point Source	App. Mode	PDE – Coeff. Form
	Dimension	2D & 1D
	Dep. Variables	4 (1D): Vi, m, n, h 1 (2D): Ve
iber .	N. of Elements	1D: 200 2D: ca. 12000
Muscle fiber (1D modell) $C \frac{dV}{dt} = \frac{a}{2\rho} \frac{\partial^2 V}{\partial x^2} - g_{Na} m^3 h(V - V_{Na}) - g_{\kappa} n^4 (V - V_{\kappa}) - g_L (V - V_L)$	Solver	Direct (UMFPACK) Time dependent (0:0.1:10)
court	rel. Tolerance	10e-5
tissue properties (e.g. musclulature)	abs. TOlerance	10e-7
$-\nabla(\sigma\nabla V_e) - \nabla\left(\varepsilon\nabla\frac{\partial V_e}{\partial t}\right) = 0$	Solution Time	<600 sec

2D model - Coupling ("model")

2D model - Animation

2D model - 2 fibers

tissue properties (e.g. musclulature)

2D model - 2 fibers

2D model - Influence of fibers

representing the more distant fiber.

Influence of electrodes position

C2/D2

C1/D1

C3/D3

C4/D4

Outlook - 3D model

(Dirichlet Boundary Conditions) App. Mode PD For	PDE – Coeff. Form
Dimension 3D	3D & 1D
Dep. 4 (Variables 1 (4 (1D): Vi, m, n, h l (3D): Ve
N. of 1D Elements 3D	ID: 200 3D: ca. 30000
Solver Difference (0:	Different solvers Fime dependent (0:0.1:10)
rel. Tolerance 10e	l0e-5
Fiber (Edge) abs. Tolerance 10e	l0e-7
Solution Time Ve	Very long 🛞

Future Work

- Adaption of model parameters (denervated muscle,)
- Implementation of musclepaths ?
- Creation of 3D geometry (CT / MRI based ?)
- •••••

Conclusion / Discussion

- HH PDE & Comsol Multiphysics are a great combination to
 - Easily create models with different geometries
 - Coupling of extracellular and intracellular potential in **both** directions
 - Simulation of effects of stimulation and generated action potentials

Questions ?!?

Thank you for your attention !!!