

Ignition Process of Microplasmas

H. E. Porteanu, R. Gesche

..translating ideas into innovation

Outline

- Microplasma sources: motivation and solutions
- Choice of the simplified 2D model
- Implementation of the plasma equations
- Time dependencies (ignition process)
- Summary

Microplasma sources: motivation

Technical applications require *microplasma* sources at *atmospheric* pressure. Example: the slot resonator

Circuit design is based on knowledge about plasma impedance (stationary) and ignition behavior (time dependent)

Microplasma sources: Comsol field simulations

Min: -5.425 Min: 1.00e4

Realistic 3D model with a complex geometry

Reduced 2D geometry

Implementation of the Plasma Equations

1. **RF Module:** In-Plane TM Propagation, *Harmonic Propagation*

Microwave Field as Energy Source

Initial Distribution of the Electric Field: $E_{norm} = \sqrt{E_x^2 + E_y^2}$

Implementation of the Plasma Equations

2. Heat Transfer (of the Ionic Gas), Time Dependent

Implementation of the Plasma Equations

3. Diffusion (of Electrons), Time Dependent

Reaction Term *R***, Simplified: Linear Dependence** 1. No recombination for $T < T_{ref}$ and $c = c_{min}$, R=0 2. Generation for $T > T_{ref}$, $R = \alpha_1 c (T - T_{ref}) > 0$ 3. Recombination for $T < T_{ref}$ and $c > c_{min}$, $R = \alpha_2 c (T - T_{ref}) < 0$ Concentration (arb. units) 2.01.5 Minimum concentration 40 20 Generation-Recombination -20 900 850 800 Minimum Ionization 750 Temperature (K) Temperature 700

Time Dependence of the Temperature

Time Dependence of the Electron Concentration

Time Dependence of the Electric Filed

Time Dependences at Different Points

Time Dependences at Different Points

Time Dependences at Different Points

Summary

- Choice of the appropriate 2D model reduces considerably the computation time (DOF=3615, 100 time points, PC Core Duo, 2.66 GHz, 4 GB RAM, 35 Min.)
- The plasma physics is essentially contained in the Reaction term (Generation - Recombination)
- Scattering rate and diffusion coefficients are constants for illustration purposes. Adequate temperature dependence to be implemented
- Good qualitative agreement of the simulated ignition process with the measured data (S-Parameter)

Acknowledgments

 The authors would like to thank to their colleagues S. Kühn, Dr. M. Herms, and Dr. P. Heymann for useful discussions and hints and to C. Hunyar and M. Graf (Fraunhofer ICT, Pfinztal) for giving details concerning plasma simulation.