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Abstract:

The present COMSOL model simulates the velocity
field, u, of a fluid flow subject to the following con-
ditions: (1), the divergence of u is zero everywhere;
(2), the curl of u is nonzero only in the interior of
a torus of circular cross section, (in which region
the only nontrivial component is the azimutal one,
!�, which, in turn is directly proportional to the dis-
tance, r, from the axis of symmetry); (3), there is no
exterior boundary of the fluid; (4), the motion is in-
dependent of time when viewed by an observer who
moves with the torus; and (5), relative to the same
observer the normal component of u is continuous
across the torus. The results enable computation of
the propagation speed of the ring but show a non-
physical discontinuity of the tangential component
of u across the torus even if the circulations calcu-
lated about the inside and outside faces of the torus
are equal.
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1. Objective

The objective of the work reported herein was to
develop an equation-based COMSOL model that
might serve as a benchmark for fluid-flow problems
having the following complications:

i. The region occupied by the fluid is unbounded;
ii. There is subregion in which the motion is ro-

tational (i.e. the velocity field, u, satisfies
curl (u) 6= 0);

iii. There is a doubly connected subregion in which
the motion is irrotational, i.e. curl (u) = 0.

2. A pair of second-order PDEs that
replace a pair of first order PDEs

Let (x, y, z) be cartesian coordinates and let {̂ı, ⌘̂, k̂}
be the corresponding right-handed orthonormal tri-
ad of vectors in the directions of the positive co-
ordinate axes. I assume, here and elsewhere, that
the velocity field is axysymmetric and without swirl.
Let the z-axis coincides with the axis of symmetry
and let (r,�, z) be cylinderical coordinates, in which

z has the same meaning as in the cartesian system
and r and � are related to x and y by

x = r cos� , y = r sin� . (2.1)1,2

Let {êr, ê�, k̂} be the right-handed orthonormal
triad of vectors associated with this system, in which
k̂ has the same meaning as in the cartesian system
and êr and ê� are in the directions of increasing r
and �, respectively. Here, and elsewhere, I will refer
to r and � as the transverse coordinate and azimuth
angle, respectively, and will apply the adjective mer-
dional to any vector component or section of a geo-
metric figure cut by half-plane of constant �.

Let R denote the whole region of unbounded
physical space and let Rc ⇢ R denote the subregion
of rotational motion occupied by the vortex core.
I restrict attention to the case when the motion in
R\Rc (i.e. the complement of Rc in the parent set
R) is irrotational. Specifically, I assume that the
velocity field satisfies

divu = 0 , curlu = Ar , (2.2)1,2

in which A is a piecewise uniform with a nonzero
value only in Rc. The solenoidality condition (2.2)1
applies to an incompressible fluid. Stokes showed
that one can represent any axisymmetric solenoidal
motion by

u = (1/r) ê� ⇥r , (2.3)

in which  is a di↵erentiable scalar field. When u is
a given velocity field  is called the Stokes Stream
Function. Typically, as here,  = 0 on r = 0. Here
the velocity field is meridional and has an expansion
of the form

u = urêr + uzk̂ , (2.4)

which defines ur and uz. Axisymmetry implies,
moreover, that the derivatives of ur and uz with
respect to azimuth angle vanish, i.e.

@ur/@� = 0 , @uz/@� = 0 (2.5)1,2

When one substitutes the special forms (2.4) and
(2.5) into the general formula for the expansion of
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the curl of a vector in a cylindrical coordinate sys-
tem one finds that there is only one nontrivial term,
namely the azimuthal one, i.e.

curlu = !�ê� , (2.6)

in which
!� := @ur/@z � @uz/@r . (2.7)

In view of (2.6) equation (2.2)2 is equivalent to
!�ê� = Arê�, or

(!� �Ar)ê� = 0 . (2.8)

Now COMSOL solves partial di↵erential equa-
tions of second order with respect to the space
derivatives. Equations (2.2)1 & (2.8) are of first or-
der and therefore not immediately suitable for sub-
stitution in the input fields of COMSOL’s General
Form PDE physics interface, for example. One may,
however, derive a boundary-value problem, includ-
ing a second order partial di↵erential equation for
u, whose solutions satisfy (2.2)1 and (2.8) by con-
struction. To this end note that if (2.2)1 and (2.8)
both hold then so does the second order equation

r(2 divu)� curl [(!� �Ar)ê�] = 0 . (2.9)

If one expands (2.9) into components relative to the
system {êr, ê�, k̂} and applies the axisymmetry as-
sumption, one gets

�êr

⇢
@(�1)(!� �Ar)

@z
� @(2 divu)

@r

�

+k̂
⇢

1
r

@

@r
[r(�1)(!� �Ar)] +

@(2 divu)
@z

�
= 0

(2.11)

after some rearrangement. Since the vectors êr and
k̂ are linearly independent equation (2.11) implies
that their coe�cients vanish separately. Thus,

@(�1)(!� �Ar)
@z

� @(2 divu)
@r

= 0 (2.12)

and

1
r

@

@r
[r(�1)(!� �Ar)] +

@(2 divu)
@z

= 0 . (2.13)

If one multiplies (2.12) by -1 one may write the re-
sult in an equivalent matrix form, namely

( @/@r @/@z )

 
2 divu

(!� �Ar)

!
= 0 (2.14)

with nominal dependent variable ur. Alternatively,
if one multiplies (2.13) by r one may write the result
in an equivalent matrix form, namely

( @/@r @/@z )

 
�r(!� �Ar)

r 2 divu

!
= 0 (2.15)

with nominal dependent variable uz. If one regards
divu as an abbreviation for the right member of

divu = ur/r + @ur/@r + @ur/@z (2.16)

and !� as an abbreviation for the right member of
(2.7) then equations (2.14) and (2.15) are suitable
for immediate substitution into the input fields of
COMSOL’s General Form PDE physics interface.

One may regard the system (2.14) and (2.15) as
necessary conditions for the simulation of the origi-
nal first order system (2.2)1 and (2.8). I now turn to
the question of su�ciency. Now (2.14) is equivalent
to (2.12) and if one multiplies the latter by ê� one
gets

curl [�(!� �Ar)êr + (2divu)k̂] = 0 . (2.19)

In the mean time (2.15) is equivalent to (2.13) and
one may write the latter in the form

div [�(!� �Ar)êr + (2divu)k̂] = 0 . (2.20)

The general solution of (2.19) is

�(!� �Ar)êr + (2divu)k̂ = r� , (2.21)

in which � is an arbitrary di↵erentiable scalar field.
If one substitutes (2.21) into (2.20) one gets

div (r�) = 0 , (2.22)

i.e. � satisfies Laplace’s equation. According to
classical potential theory (e.g. Ref. 2) if a scalar
field, g, satisfies Laplace’s equation in a simply
connected domain and rg • n̂ = 0 over the whole
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boundary (i.e. g satisfies homogeneous Neumann
conditions) then rg = 0 thoughout the domain. In
the present example (2.22) shows that � satisfies
Laplace’s equation and according to (2.21) a suf-
ficient condition for � to satisfy r� • n̂ = 0 (i.e.
homogeneous Neumann conditions) is for the ve-
locity field to satisfy

[�(!� �Ar)êr + (2divu)k̂] • n̂ = 0 . (2.23)

But (2.23) will hold any time the original first-
order system (2.2)1 & (2.8) holds uniformly over
the boundary. In summary, if the system of par-
tial di↵erential equations (2.14) & (2.15) holds in
a simply connected domain and the original first-
order system (2.2)1 & (2.8) holds uniformly over its
boundary then the original first-order system must
hold throughout the interior of the domain, thereby
confirming the su�ciency to which I alluded earlier.

3. Conditions for uniqueness of u

Recall that Rc is the axysymmetric three-dimen-
sional region of rotational motion and R\Rc is the
complimentary axisymmetric region where the mo-
tion is irrotational. Here, and elsewhere, I will re-
place the symbol R by D in reference to the two-
dimensional meridonal section of the corresponding
three dimensional axisymmetric region. Thus D is
the meridional section of R, Dc is the meridional sec-
tion of Rc, D\Dc is the meridional section of R\Rc,
etc.

I assume that the Dc is a circular disk of radius
c, whose center is situated at a distance rm from
the axis of symmetry and I assume that the plane
z = 0 coincides with the equatorial plane of Rc. I
apply the adjectives up and down to the direction
of k̂ and �k̂, respectively, and refer to the region
z > 0 and z < 0 as the upper and lower halves of
R, respectively.

Under the foregoing assumptions one may ex-
pect ur and uz to be odd and even functions of z,
respectively. There is therefore no need to simulate
the velocity field in both the upper and lower halves
of R. Accordingly the present work reports results
only for the upper half. Thus I will write D+ to
denote the upper half of D, Dc

+ the upper half of
Dc, D+\Dc

+ the upper half of D\Dc, etc..
In the last section I appealed to classical po-

tential theory in the assertion of conditons that en-
sure the vanishing of the right member of (2.21).

Owing to space limitations, I will again appeal to
classical potential theory, this time in the assertion
of conditions for the vanishing of the vector di↵er-
ence u2 � u1 between two solutions, u1 and u2 of
the same boundary-value problem. To this end note
that if u1 and u2 are both solutions of the original
first order system (2.2)1,2 then we have

div (u2�u1) = 0 , curl (u2�u1) = 0 . (3.1)1,2

Suppose, now, that (3.1)1.2 hold in a generic
meridional section D1

+. Note that the boundary
@D1

+ is a closed loop. Let t̂ denote the unit vec-
tor tangent to the loop @D1

+. For definiteness let t̂
be oriented in the right-handed sense relative to ê�.

On a part Pn 2 @D1
+ where u1 and u2 satisfy a

common boundary condition in which u • n̂ is given,
we have

(u2 � u1) • n̂ = 0 . (3.2)

Alternatively, on a part Pt 2 @D1
+ where u1 and u2

satisfy a common boundary condition in which u • t̂
is given, we have

(u2 � u1) • t̂ = 0 (3.3)

In the present investigation I assume that u • n̂ and
u • t̂ are given on adjoining but non-overlapping sub-
sets of @D1

+ whose union is all of @D1
+. One may,

accordingly, write @D1
+ = ⌃Pn [ ⌃Pt, in which the

summation signs acknowledge the possibility that
either the subset of @D1

+in which u • n̂ is given or
the one in which u • t̂ is given, or both, might be
composed of disjoint parts.

According to classical potential theory the fore-
going equations and definitions enable one to prove
the following lemmas, which I assert here without
proof:

Lemma 1. If u2 � u1 is a solution of the system
(3.1)1,2 over a meridional section D1

+ and if @D1
+ can

be partitioned into two piecewise connected subsets
that adjoin each other but do not overlap and such
that (u2 � u1) • n̂ = 0 over one subset and (u2 �
u1) • t̂ = 0 over the other then u2�u1 = 0 uniformly
over D1

+.

Lemma 2. Suppose u2 � u1 is a solution of the
system (3.1)1,2 over a meridional section D1

+ and
suppose @D1

+ can be partitioned into four piecewise
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connected subsets that adjoin each other but do not
overlap and such that (u2 � u1) • n̂ = 0 over two of
these subsets and (u2 � u1) • t̂ = 0 over the other
two. Let C be a simple oriented contour in D1

+ that
starts on one of the two subsets where (u2�u1) • t̂ =
0 and ends on the other and suppose that

Z
C
(u2 � u1) • t̂ ds = 0 , (3.4)

in which s is an arc-length parameter that increases
in the direction of t̂. Then u2 � u1 = 0 uniformly
over D1

+.

Lemma 1 applies, in particular, to Dc
+, i.e. the

region occupied by the cross section of the half core
in the region z > 0. Here u • n̂ is given (via an
impermeability condition) on the semicircular edge
of @Dc

+ in the region z > 0 and u • t̂ is zero on the
equatorial edge of @Dc

+ (since u • t̂ = ur there and
ur is odd in z).

Lemma 2 applies, in particualar, in D + \Dc
+

(the meridional cut of the uper region of irrotational
motion). Thus u • n̂ is given (via an impermeability
condition) on the semicircular edge of @(D + \Dc

+)
in the region z > 0 and on the centerline where
u • n̂ = ur = 0. Moreover u • t̂ is zero on the disjoint
equatorial edges of @(D+\Dc

+) (one inboard and one
outboard) since u • t̂ = ur there and ur is odd in z.

Note that (3.4) will hold if u1 and u2 are sub-
ject to a subsidiary condition of the form

Z
C
u • t̂ ds := �/2 (3.5)

with given �. Here, � is the circulation about the
core, i.e. the value that would result if C in (3.5)
were a closed loop that embraced the whole core.
The need for the circulation condition is typical
in problems in doubly connected domains—as the
present one would be if the domain of irrotational
motion included both the lower and upper regions.

4. Simulation of u the unbounded ex-
terior

Let (R, ✓,�) be spherical coordinates related to the
cylindrical coordinates (r,�, z) by

r = R sin ✓ , z = R cos ✓ , (4.1)1.2

in which the azimuth angle � has the same mean-
ing as in the cylindrical system. I will refer to R
and ✓ as the radial and colatitudinal coordinate, re-
spectively. Let {êR, ê✓, ê�} denote the right-handed
orhonormal triad of vectors in the directions of in-
creasing, R, ✓, and �, respectively, in which ê� has
the same meaning as in the cylindrical system.

Let R denote the position of a typical point in
the physical domain R relative to the a fixed ori-
gin. One may construct a change of variable R! q
that maps an unbounded subregion Re 2 R (the
superscript denotes exterior) to a bounded image
Q, which I will call a proxy domain. Before giv-
ing equations that define R ! q I note that one
may cover Q with a system of spherical coordinate
(q,#,') analogous to the one that covers the phys-
ical domain R. To this end let {ûq, û#, û'} denote
the right-handed orthonormal triad of vectors in the
direction of increasing q, #, and ', respectively.

Let a denote a given constant length. One may
now define R! q by the following rules:

Rq := a2 , ✓ := # , ' := � ,

ûq := êR , û# := ê✓ , û' := ê� .

(4.2)1,2,3

(4.2)4,5,6

The system (4.2) implies that

R
@

@R
= �q

@

@q
,

@

@✓
=

@

@#
,

@

@�
=

@

@'
.

(4.3)1,2,3

The foregoing definition of R ! q is the equiva-
lent of one that Lord Kelvin introduced in 1845
(Ref. 1). Following custom (e.g. Ref. 2, pages 231–
233) I will refer to this definition of R! q as Kelvin
Inversion.

Now COMSOL’s 2D axisymmetric algorithm
requies the use of cylindrical coordnates. To this
end let ($,', ⇣) denote cylindrical coordinates that
cover Q and are related to the corresponding spher-
ical coordinates (q,#,') by

$ = q sin# , ⇣ = q cos# , (4.4)1.2

in which ' is the same azimuth angle as in the
spherical system and let {û$, û', û⇣} denote the
orthonormal triad of vectors in the directions of in-
creasing $, ', and ⇣, respectively.

The conditions I have given thus far enable the
transformation of the second-order PDE for u in
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R, namely(2.9), to the corresponding second order
PDE for u in Q. In the interest of brevity I will
compress the following derivation by presenting it
in the form of a set of instructions followed by a
description of what I get when I carry them out.
Specifically,

(i) Expand (2.9) into components in spherical co-
ordinates in R;

(ii) Transform the result of (i) to the corresponding
components in spherical coordinates in Q via
(4.2) and (4.3);

(iii) Transform the result of (ii) from spherical co-
ordinates in Q to cylindrical coordinates in Q;

(iv) Express the two nontrivial components of the
resulting vector PDE in matrix form analogous
to the system (2.14), (2.15).

These operations yield

( @/@$ @/@⇣ )

 
$F$

$F⇣

!
=

 
0

0

!
, (4.5)

with nominal dependent variable u$, and

( @/@$ @/@⇣ )

 
F⇣

�F$

!
=

 
0

0

!
, (4.6)

with nominal dependent variable u⇣ , in which F$ &
F⇣ are abbreviations for the longer expressions

F$ = 2(u$/$)a�2S+a�2[2u⇣,⇣S�(u$,⇣ +u⇣,$)C]
�2a�2(S2u$,$ + SCu$,⇣ + CSu⇣,$ + C2u⇣,⇣)S

(4.7)
and
F⇣ = 2(u$/$)a�2C�a�2[(u$,⇣+u⇣,$)S�2u$,$C]
�2a�2(S2u$,$ + SCu$,⇣ + CSu⇣,$ + C2u⇣,⇣)C .

(4.8)

Here (u$, u⇣) are defined such that u = u$û$ +
u⇣û⇣ , the commas denote partial di↵erentiation,
and

C := ⇣/q , S := $/q , q = ('2 + ⇣2)1/2 .
(4.9)1,2,3

Geometries in two components. The present
model employs two components. In both compo-
nents a is a the radius of sphere centered on the

origin (r, z) = (0, 0) and sized so that it intersects
the toroidal boundary of the vortex core perpendic-
ularly. Here, and elsewhere, I will denote this sphere
by Sa and call it the reflecting sphere. For later ref-
erence let S2a denote the sphere concentric with Sa

but with twice the radius.
In Component 1 the geometry is an assembly

of three sudomains, namely: Rc (the vortex core);
Ri (the region of irrotational motion exterior to the
core but interior to Sa); and Rne (the region exterior
to Rc and Ri but interior to S2a). In each of the
subdomains Rc and Ri COMSOL solves the system
(2.14) and (2.15). In the subdomain Rne COMSOL
imports the solution from Component 2 by means
of a model coupling operator of General Extrusion
type.

In Component 2, the geometry is an assembly
of two components, namely Qne (the image of Rne

under Kelvin Inversion) and Qfe (the image un-
der Kelvin Inversion of the exterior of S2a). The
superscripts ne and fe stand for near exterior and
far exterior, respectively. COMSOL solves the sys-
tem (4.5) and (4.6) over the assembly consisting of
Qne and Qfe. The interface between the two is an
Identity Pair across whcih COMSOL applies a Con-
tinuity boundary condition.

Exchange of information between the compo-
nents across a portal. I will use the term portal
to describe the part of the reflecting sphere between
the centerline and the boundary of the vortex core.
The algorithms in the two Components trade infor-
mation across the portal to ensure that the solution
in Rne (which is the Kelvin Inverse of the com-
puted solution in Qne) is a proper contination of
the computed solution in Ri. Thus Component 1 in-
cludes definitions of two model coupling operators of
Boundary Similarity type, each of whose geometric
scope is the portal: they di↵er in that the source for
one is the destination for the other, the source and
destination being the two sides of the portal. The
physics interfaces that solve (2.14) and (2.15) have
Dirichet conditions on the portal that import values
of ur and uz from the other side (namely u$ and
u⇣ , respectively). The physics interfaces that solve
(4.5) and (4.6) have Flux/Source boundary condi-
tons that import values of the fluxes imported from
the other side. To be specific the expressions that
COMSOL requires in the field it labels ”Boundary
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Flux/Source” in the Flux/Source condition under
General Form PDE physics interfaces for (4.5) and
(4.6) are

� n$$F$ � n⇣$F⇣ (4.10)

and
� n$F⇣ � n⇣(�F$) , (4.11)

respectively, in which F$ and F⇣ have values im-
ported from Component 1, namely

F$ = a�4(r2 + z2)1/2{2r[(ur/r) + ur,r + uz,z]
+z(ur,z � uz,r)} (4.12)

and
F⇣ = a�4(r2 + z2)1/2{�r(ur,z � uz,r)

+2z[(ur/r) + ur,r + uz,z]} . (4.13)

Figure 4.1 Meridional cut through a vortex ring as
seen by an observer moving with the ring. Colors show
azimuthal vorticity, solid lines are contours of Stokes

stream function (in equal increments) and arrows show ve-
locity vectors. Note the recirculation bubble that follows
the ring. Here rm = 1[m], � = 1[m2/s], and c/rm = 1/3.

The computed value of W1 is -0.028327 [m/s].

Figure 4.2 Tangential (ut) and normal (un) components
of velocity over the core boundary on its two sides, one
where the motion is irrotational and the other where it is

rotational.

Transformation of normal velocity under Kel-
vin Inversion. The near exterior Rne has a face
that abuts the vortex core along a collar-shaped sur-
face one of whose edges is on the reflecting sphere
while the other is on the outer equator of the core
boundary. Since this collar is part of the core bound-
ary the normal velocity u • n̂ is subject to an im-
permeabilty condition there. In the present model
COMSOL calculates the velocity field in Qne in
Component 2 so one must reexpress the imperme-
ability condition on this collar under Kelvin Inver-
sion. The identity relevant to this purpose is

u • n̂ = u⇣ [n⇣ � 2C(Cn⇣ + Sn$)]
+ u$[n$ � 2S(Cn⇣ + Sn$] (4.14)

On the propagation speed of the ring. In a ref-
erence frame moving with the ring the remote fluid
is in motion. To this end one may include under the
physics interface for equation (4.6) a Pointwise Con-
straint with a single point for its geometric scope
that equates the expression uz �W1 to zero. Here
W1 is an unknown dependent variable. To instruct
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Figure 4.3 Same as Fig. 4.1 but this time the observer
is at rest relative to the remote undisturbed fluid.

COMSOL to find its value one may insert a physics
interface of Global ODEs and DAEs type in Compo-
nent 2 that declares W1 as its dependent variable
and specifies Z

C
u • t̂ ds� �/2 (4.15)

as its constraint expression [which will vanish if the
circulation condition (3.5) holds]. The value of � is
prescribed (with unit value) in the global parame-
ters list. The contributions to the integral in (4.15)
from the parts of C interior and exterior to Sa are
calcuated separately, the latter in Component 2 via
the identity

u • t̂ ds =(a2/q2)[(u⇣t⇣ + u$t$) d�

� 2(u⇣C + u$S)(Ct⇣ + St$) d� , (4.16)

in which d� := kdqk. The definitions of rm, c, and �
imply that A in (2.2)2 equals �/(rm⇡c2). See Figs.
4.1 & 4.2 for sample results in a reference frame that
moves with the vortex ring.

In the case when the reference frame at rest rel-
ative to the remote fluid uz is set to zero at infinity.
The impermeability condition on the core bound-
ary involves an unknown rise velocity Wrise for that

boundary, which then becomes the dependent vari-
able to be found by the the Global ODEs and DAEs
physics interface (in which the constraint is the cir-
culation condition, as before). See Figure 4.3 for
sample results in this frame.

5. Discussion

Owing to the discontinuity in the tangential velocity
across the boundary of the core the present results
are incompatible with continuity of pressure. One
conjecture is that there exists a solution that has a
noncircular cross section but is otherwise compat-
ible with the present model, including circulation
about the core, the area and centroid of the cross
section of the core, and the same dependence of !�

with respect to r. An investigation to find the shape
of the cross section, if it exists, via tools in COM-
SOL’s optimzation module presents an opportunity
for further development.

6. Conclusions

1. COMSOL enables computation of a solenoidal
velocity field in a physical domain Ri [ Re—in
which Ri and Re denote a bounded interior and
an unbounded exterior regions, respectively—
by simultaneous solution for the flows in Ri and
Q, in which Q is a bounded proxy for Re;

2. COMSOL’s General Extrusion model coupling
operator enables one to give e↵ect to the change
of independent variable (Kelvin Inversion)
that maps Re to Q;

3. The simultaneous assumptions that the vortex
core has circular cross section and that the az-
imuthal vorticty in the core is directly propor-
tional to the distance from the centerline en-
ables one to satisfy continuity of normal but
not tangential velocity across the core bound-
ary.
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