Multiphysics Simulation of the Effect of Sensing and Spacer Layers on SAW Velocity

Peng Zheng,^{1,2} David W. Greve,^{1,3} and Irving J. Oppenheim^{1,4}

- ¹National Energy Technology Laboratory
- ²Department of Physics
- ³Department of Electrical and Computer Engineering
- ⁴Department of Civil and Environmental Engineering Carnegie Mellon University, Pittsburgh, PA, USA

Surface Acoustic Wave (SAW) Sensor

- Surface acoustic wave: acoustic waves traveling along the surface of an elastic body, with an amplitude decays exponentially with depth
- <u>SAW sensor</u>: using interdigital transducer to detect surface acoustic wave velocity change caused by surface perturbation
 - -- Surface conductivity change on piezoelectric substrate
- Research interest: SAW oxygen sensor in combustion process (up to 1000 C)

Conductivity Based SAW Gas Sensor

Acoustic Wave Sensor: Theory, Design, and Physico-Chemical Applications / Ballantine

Calculated surface acoustic wave velocity and sensitivity as a function of surface sensing film conductivity

- Conductivity based SAW gas sensor concept: A resistive gas sensing layer on piezoelectric substrate surface
- Analytic theory excludes the mechanical effect of sensing and spacer layer
- Accurate multiphysics finite element simulation is needed to include both the electrostatic effect and mechanical effect of sensing and spacer layer

Proposed SAW Sensor Structure

Side View of SAW sensor

L-edit pattern of SAW sensor

- SAW gas sensor structure
 - -- Oxygen surface sensing layer: ZnO;
 - -- Spacer layer: Si₃N₄ or SiO₂;
 - -- Piezoelectric substrate: YZ cut LiNbO3;
 - -- Rayleigh surface acoustic wave wavelength: λ=8 μm
- Simulation objective
 - -- To analyze the effect of thickness and materials of sensing and spacer layer on sensor sensitivity
 - -- To optimize the design of SAW oxygen sensor used in combustion process

Simulation Setup

	Mechanical BC	Electrical BC
Γ ₁	Free	zero charge /symmetry
$\Gamma_{2, \Gamma_{2}}$	Free	Continuity
Γ_4	Fixed	Ground
$ \begin{array}{c c} \Gamma_{R}, \Gamma_{R1}, \\ \Gamma_{R2} \Gamma_{L}, \\ \Gamma_{L1}, \Gamma_{L2} \end{array} $	Periodical boundary conditions	

- Eigenfrequency analysis in multiphysics finite element package COMSOL
 3.4a 2D piezo plane strain mode (smppn)
- Periodic boundary condition to simulate the surface acoustic wave propagation
- Surface acoustic wave velocity = Eigenfrequency × Width

Simulation Setup

Continuity Equation
$$\nabla \cdot \overrightarrow{J} = -\frac{\partial \rho_v}{\partial t} = jw\rho_v$$
 Ohm's Law
$$\nabla \cdot \overrightarrow{J} = \nabla \cdot \sigma \overrightarrow{E} = \nabla \cdot (\sigma \varepsilon_0 \varepsilon_r \nabla V)$$

$$\nabla \cdot (\sigma \varepsilon_0 \varepsilon_r \nabla V) = -jw\rho_v$$
 Electrostatic Equation
$$-\nabla \cdot (\varepsilon_0 \varepsilon_r \nabla V) = \rho_v$$

$$-\nabla \cdot ((\frac{\sigma}{jw} + \varepsilon_0 \varepsilon_r) \nabla V) = \rho_v$$

- Sensing layer: Isotropic materials mode, electric equation enabled
 - -- Electrostatic equation $-\nabla \cdot (\varepsilon_0 \varepsilon_r \nabla V) = \rho_v$; Elastic equation $\mathbf{T} = c_E \mathbf{S}$
 - -- Complex dielectric permittivity ε_r $j\sigma/\omega\varepsilon_0$ to simulate conductivity
- Spacer layer: Isotropic materials mode, electric equation enabled
- <u>Substrate</u>: Piezoelectric materials mode
 - -- Piezoelectric equation: $\mathbf{T} = c_E \mathbf{S} e^T \mathbf{E}$ $\mathbf{D} = e \mathbf{S} + \varepsilon_S \mathbf{E}$

Simulation Result

Conducting sensing layer Insulating sensing layer Insulating sensing layer

- Surface acoustic wave velocity change as a function of sensing layer bulk
- conductivity is simulated in different structure $d(\Delta v/v_f)$ SAW sensor sensitivity is calculated by $S = -\frac{d(\Delta v/v_f)}{d\sigma}$

Effect of Spacing Layer

- ZnO/Si₃N₄/LiNbO₃ and ZnO/SiO₂/LiNbO₃ structures with different spacer thickness are simulated
- ZnO/Si₃N₄/LiNbO₃ structure has better sensitivity than ZnO/SiO₂/LiNbO₃ when the spacer is thinner than 400 nm
- The ZnO/Si₃N₄/LiNbO₃ structure is selected for the following simulation

Effect of Sensing Layer

- ZnO/Si₃N₄/LiNbO₃ structure with different sensing layer thickness are simulated
- The maximum sensitivity increase linearly as sensing layer thickness increase
- Thicker sensing layer has larger film conductivity change $\sigma_{\it film} = \sigma_{\it bulk} t$ resulting a higher sensitivity

Summary

- Surface acoustic wave propagation in ZnO/Si₃N₄/LiNbO₃ and ZnO/SiO₂/LiNbO₃ layered structures are simulated using COMSOL 3.4a 2D piezo plane strain mode.
- The effect of thickness and materials of sensing and spacer layer on the sensitivity are analyzed to optimize SAW gas sensor design
- The simulation result shows that the maximum sensitivity increase as the spacer gets thinner or the sensing layer gets thicker for both layered structure
- ZnO/Si₃N₄/LiNbO₃ layered structure shows higher sensitivity than the ZnO/SiO₂/LiNbO₃ layered structure with a spacer thickness ranges from 50 nm to 400 nm

