

Study of Hydrogen Release from a Metal Hydride Bed **Adiabatic Conditions** Ke Song, Harold Knickle **Department of Chemical Engineering** University of Rhode Island knickle@egr.uri.edu songk@egr.uri.edu

Presented at COMSOL Conference October 8, 2009 Boston

Objective

- Construct Metal Hydride Bed (MHB) Model using COMSOL
- Simulation the dynamic H₂ releasing process at adiabatic operating condition
- Provide a guideline for MHB Design

Metal Hydride Bed Design

- Cylinder Metal Hydride Bed (MHB) with 5 kg H₂ loading
- Supply continuous hydrogen to a Fuel Cell through a regulator at **adiabatic** condition and specified power loading 10kWe
- Restrain applied: P_{outlet} >P_{downstream}
- Height: 0.570 m; diameter: 0.248 m

Operating Conditions

10 kWe

1 atm

0.66V, 3000A/m²

95%

Fuel Cell

Power Requirement Pressure **Operating Point** Hydrogen Utilization

INIUR		
Initial Temperature	298 K	
Initial Gas Pressure	5 MPa	
Initial Pressure of Simulation	156 kPa	
Maximum Hydrogen Storage	5 kg	
Hydrogen Storage Capacity	6%	
Outlet Flow Rate	0.0826 mol/s	
Theoretical Supply Period	8.37 hrs	
www.uriedu RHODE ISLAND		

Model Analysis Methods

- 1. Darcy's Law: Momentum Balance in Porous Material
- 2. Mass Balance: H_2 in gas phase/MH
- Desorption Rate: Endothermic;
 MH→Gas Phase
- 4. Energy Balance: Lumped Model

Darcy's Law for H₂ in thePorous Media

• The gas velocity within the pores of the MHB can be calculated using

Darcy's Law

$$V_g = -\frac{K}{\mu_g} \nabla P_g$$

K: Permeability of the Porous MHB

 μ_g : Dynamic Viscosity of

Hydrogen in gas flow

 P_g : Pressure of Hydrogen in the

pores

 V_g : volumetric flow rate per cross sectional area

Continuity Equation for the Gas Phase (H₂) in the Pores

 Darcy's Law is coupled with the Continuity
 Equation to solve for the gas phase transient process

$$\varepsilon \frac{d\rho_g}{dt} + \nabla \bullet (\rho_g V_g) = -m$$

 ρ_g : Density of Hydrogen *m*: Hydrogen Desorption Rate c: Perosity of Motal

 ε : Porosity of Metal

Mass Balance for the H₂ in the Solid Phase (MH)

- Solid volume is fixed; hydrogen diffusion in solid is neglected
- Hydrogen density variation in the metal:

$$(1 - \varepsilon) \frac{d\rho_{H_2M}}{dt} = m$$

 Where the density in the derivative is just the mass of H₂ in the MH divided by the Volume of the tank times the one minus the porosity

H₂ Desorption Rate from MH to Gas Phase

 The *m* is the hydrogen mass desorbed per unit volume which can be estimated from equation below, the desorption only happened when *P_a<P_{ead}*, otherwise the *m* is 0 (a judging equation is applied in COMCOL):

$$m = C_d \exp(-\frac{E_d}{R_g T})(\frac{P_g - P_{eqd}}{P_{eqd}})\rho_{H_2 M}$$

C_d: Desorption Constant

- E_d : Activation Energy for Desorption
- P_{eqd} : Equilibrium Pressure for Desorption in the Gas Phase
- ρ_{H_2M} : Hydrogen Density in Solid Phase

Ref: J. Less Common Metals 1987, 131, 235-244

Energy Balance Equation for Rhode Island Homogenous Mixture (Lumped Model)

 The Lumped Energy Balance Equation is build for Gas/Solid Mixture:

$$(\rho C_p)_e \frac{\partial T}{\partial t} = k_e \nabla^2 \mathbf{T} + \mathbf{m} \Delta \mathbf{H}^o + \mathbf{S}_{\text{th}}$$

- C_p : Specific Heat
- k_{ρ} : Effective Thermal Conductivity
- ΔH° : Reaction Heat of Desorption
- S_{th}: Heat Source

• Hydrogen Density (Ideal Gas Law)

$$\rho_g = \frac{M_g P_g}{R_g T}$$

where M_q is the molecular weight of hydrogen gas

- Dynamic Viscosity of Hydrogen: 9.05*10-6 kg/(m.s²) at 298K
- Equilibrium Pressure of Hydrogen Desorption: 156kPa at 298K
 ref: DOE Hydride Material Listing Database

Estimation of Parameters & Variables (cont)

• The effective specific heat term in energy equation:

$$(\rho C_p)_e = (\epsilon \rho_g C_{pg} + (1 - \epsilon) \rho_s C_{ps})$$

Where subscript *g* represent gas, *s* represent solid

• S_{th} is zero in adiabatic model

Boundary Schematic Setting

RHODE ISLAND

www.uri.edu

Initial and Boundary Conditions

Initial Condition, t=0	$p = p_{eqd}$		
	$ ho_{H2M}= ho_{H2M_S}$		
	T=T_ini		
Boundary 1, center axis	dp/dr=0		
	$d\rho_g/dr=0$		
	$d ho_{H2M}/dr=0$		
	dT/dr=0		
Boundary 8, wall	dp/dr=0		
	$d\rho_g/dr=0$		
	$d ho_{H2M}/dr=0$		
	dT/dr=0		
Boundary 2,7, top and bottom	dp/dz=0		
	$d\rho_g/dz=0$		
	$d ho_{H2M}/dz=0$		
	dT/dz=0		
Boundary 4, outlet	$v_g = v_{g_outlet}$		
	$N=n_{outlet}$ (Fixed)		
	$d\rho_{H2M}/dz=0$		
	$T=T_out$		

Parameters Used in Simulation

	Value	Range:	Comments
Metal Properties:			
Metal Density, ρ _{emp} [kg/m ³]	6000	4000-8000	Pure Metal
Metal Density at Saturation, ρ_s [kg/m ³]	6360		
Saturated Hydrogen Density in Metal Hydride, ρ _{H2M_S} [kg/m ³]	360		
H_2 Storage Capacity, h [kg H_2 /kg Metal]	6%	DOE 2010	Hydrogen Loading Ratio
Permeability, K [m²]	10^-8	10 ⁻⁶ -1.1*10 ¹²	Experiment
Porosity, ε	0.5	0.5	Void Fraction of Metal Hydride
Specific Heat of Hydrogen, C _{og} [J kg ⁻¹ K ⁻¹]	14890		
Specific Heat of Metal, C _{ps} [J kg ⁻¹ K ⁻¹]	500	490-1000	Pure Metal
Effective Thermal Conductivity, k _e [W m ⁻¹ K ⁻¹]	1.32	0.34-1.6	Gas and Metal Mixture
Desorption Properties:			
Desorption Active Energy, E _d [J mol ⁻¹]	16000	15000-30000	Active Energy
Desorption Heat, ΔH _d [J mol ⁻¹]	1.6*10 ⁷ [J kg ⁻¹]	27500-36000	Desorption Energy
Desorption Coefficient, C _d , [s ⁻¹]	10	10	Experiment
Desorption Equilibrium Pressure, Pead [kPa]	156		

Initial Pressure Drop

- The simulation show there is an initial pressure drop from 5MPa to the equilibrium pressure (156 kPa).
- This process last about 321s (5mins) without desorption.

Thus we choose the 156 kPa as our simulation initial condition (t=0) to analyze the desorption process.

RHODE ISLAND

www.uri.edu

Pressure Variation at P_{ini}=5 MPa

Apply in COMSOL

- 1. Choose **2D** symmetric mode
- 2. Choose the appropriate PDE mode: **Darcy's Law** for porous material and **mass diffusion mode** for solid phase; **heat conduction mode** for lumped energy model
- 3. Draw the geometry
- 4. Set the initial and boundary condition
- 5. Set scalar expressions and constants
- 6. Initialize the mesh
- 7. Choose time dependent solver and solve the problem

Modeling Geometry

www.uri.edu

Summary of Basic Model Equations

Momentum Balance: Darcy' Law	$v_g = -\frac{K}{\mu_g} \nabla P_g$
Mass Balance: Gas Phase	$\varepsilon \frac{\partial(\rho_g)}{\partial t} + \nabla \cdot \left(\rho_g v_g\right) = -m$
Mass balance: Solid Phase	$(1-\varepsilon)\frac{\partial(\rho_s)}{\partial t} = m$
Energy Balance: Gas/Solid	$(\rho C_p)_e \frac{\partial T}{\partial t} = k_e \nabla^2 T + m\Delta H^o + S_{th}$

Simulation Results

Adiabatic Model Endothermic Desorption

Pressure

H2 Desorption Rate

H₂ Concentration in MH

Pressure Variation at Outlet (0, UNIVERSITY OF **Rhode Island** 0.570)

www.uri.edu

Temperature Variation at Outlet (0, 0.570)

www.uri.edu

UNIVERSITY OF **Rhode Island**

Hydrogen Concentration in MH at UNIVERSITY OF **Outlet (0, 0.570) Rhode Island**

www.uri.edu

Results and Conclusions

- The model successfully simulates the dynamic process of MHB H₂ releasing
- A basic template for future modeling is built
- The simulation indicates:

For adiabatic situation, the gas pressure could be considered relative spatially constant after initial drop although there is small variation along the surface; the gas pressure in the tank varies with time obviously;

Same conclusions can be applied on hydrogen concentration in MH, hydrogen desorption rate and temperature in tank

Rhode Island Results and Conclusions (cont)

• The simulation indicates:

In order to maintain the downstream flow at fixed fuel cell pressure (1 atm), the pressure at upstream of valve must be greater than 1 atm. Under this condition, the adiabatic model can last around 2700s because the endothermic desorption reduces the tank temperature and limits the desorption rate which causes the inner pressure to fall below the required value to maintain the flow rate;

There is still plenty H₂ left in the cold tank

Future Works

• The model can be expanded to different operating conditions:

1) Isothermal; 2)External heat source; 3) Inner heat source

Parameters investigation will be applied:
 Permeability, Active Energy, Heat Transfer
 Coefficient ...

