#### A Capacitance Sensor for Pipeline Flows of Oil-Water Mixtures

Sayeed Rushd and Dr. Sean Sanders

Chemical & Materials Engineering Department University of Alberta Edmonton, AB, Canada



#### **Global Crude Oil Reserves**



#### **Pipeline Transportation**

#### Lubricated Pipe Flow



[Joseph et al., J. Fluid Mech., 1999; McKibben et al., Can. J. Chem. Eng., August 2000]

#### **Capacitance Sensor**



## **Governing Physics**



## **Pipe Spool Capacitor**



#### **Pipe Spool Capacitor**





N: Naphtha, W: Water

#### Simulation **COMSOL**



#### **PSC: Geometric Model**



**PSC: Post Processing Result** 

#### **Results** Experiment & Simulation



N: Naphtha, W: Water

# Results





# **Conclusions**

- A capacitance sensor has the potential to quantify wall fouling- and lubricating water-layer in LPF
- Electrodes of a capacitance sensor can be conveniently placed along the LPF pipeline
- COMSOL simulation can be utilized to design and calibrate a capacitance sensor

## **Acknowledgements**

- Mr. Walter Boddez, Instrument Shop
- Mr. Dave Parlin, Machine Shop
- The NSERC Industrial Research Chair in Pipeline Transport Processes