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Introduction

Flow and heat transfer around a sphere to liquids have 
applications in chemical industry such as

• Fixed or fluidized beds
• Falling ball viscometry
• Emulsion or suspension processing, such as foodstuff 
• Emulsions & suspensions exhibiting a shear-thinning 

behavior with power law index n ~0.2-~0.8



Governing equations and boundary 
conditions

Figure 1. Schematic diagram of flow around a sphere in a tube



Continuity equation 0=•∇ U

Momentum equation

Thermal energy equation

Governing equations

σρ •∇=∇• UU

TkTUCp
2∇=∇•ρ

U, velocity vector; σ, total stress tensor; T, temperature

ρ, density; k, thermal conductivity; Cp, specific heat capacity



Momentum equation σρ •∇=∇• UU

Need a constitutive equation relate the stress to the velocity gradient

τσ +−= pI
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Power-law model (n<1)

(shear-thinning behavior)
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On the tube wall

On the sphere surface

Boundary conditions
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Axis of the tube Position of r=0 set to be axial symmetry

Exit Pressure =0, no viscous stress,
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Directly accessible from 
COMSOL postprocessing

Method to obtain local and sphere 
surface average Nusselt numbers

Dimensionless numbers: λ (geometrical parameter), Re (flow parameter), 
Pr (heat parameter), Nu=f(λ, Re, Pr, n)
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Simulation procedure

1. COMSOL Multiphyscis 3.5a
2. Quadrilateral elements
3. Element choices:

velocity-pressure coupling, Lagrange-P2P1; T, Lagrange-Quadratic
4. Separately solve momentum equation and energy 

equation
5. Using corresponding Newtonian flow and temperature  

fields as initials to facilitate convergence
6. sphere-in-sphere configuration to mimic λ=0 

(unconfined) 



Results and discussion

Validation

λ=0 (unconfined), n=1 (Newtonian), Pr=7
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Figure 2(a). Comparison of mean Nu for 
the unconfined and Newtonian fluid case

Figure 2(b). Comparison of mean Nu at 
different diameter ratios for the Newtonian fluid
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Figure 3(a). Comparison of mean Nu  
at different power law indices for the 
unconfined case

Figure 3(b). Comparison of  local Nu 
at front and rear stagnation points for 
the unconfined case
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Local Nu for Newtonian fluids

Figure 4. Local Nusselt number at the sphere surface at different 
Reynolds numbers and diameter ratios for Newtonian fluids
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Figure 5(a). Local Nusselt number at the sphere surface at different 
Reynolds numbers and diameter ratios for n=0.6

Local Nu for non-Newtonian fluids
n=0.6, Pr=20
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Figure 5(b). Local Nusselt number at the sphere surface at different 
Reynolds numbers and diameter ratios for n=0.3

Local Nu for non-Newtonian fluids
n=0.3, Pr=20
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Maximum Nuθ away from the front stagnation point

Two competing mechanisms

1. Due to the shear-thinning behavior, lowering 
effective viscosity facilitates heat transfer

2. Temperature gradient decreases with the θ



Local Nu

λ=0.5, Re=100, n=0.3
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Figure 6. Effect of Prandtl number on local Nusselt number



Mean Nu for Newtonian fluids

n=1, Pr=20
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Figure 7. Effect of Re, λ and Pr on mean Nusselt number for Newtonian fluids
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n=0.2, Pr=1
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Figure 8. Effect of Re, λ and Pr on mean Nusselt number for non-Newtonian fluids



Effects of wall and n on mean average Nu become 
less at smaller Prandtl numbers

At smaller Pr’s, advection is weak, conduction is 
dominant. Thus the flow characteristics are 
largely irrelevant. This phenomenon is stronger at 
n<1.



λ=0.5, Re=100, n=0.2
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Figure 9.  Instability increases with Pr



Conclusions

• Nu increases with the increase of Re, Pr, and λ, 
decrease of n

• Wall effects become less severe at lower Pr,  Re and n

• Effects of wall with Re, Pr and n on heat transfer are 
coupled
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