AACHENER VERFAHRENSTECHNIK

Acid-Base Reactions Enhancing Membrane Separation: Model Development and Implementation

October, 2009 <u>Serafin Stiefel</u>, Christoph Bayer, Michael Follmann, Thomas Melin

Overview

- Introduction
- Governing Equations
 - Differential-algebraic equations
 - Boundary conditions
 - Implementation
- Verification and Results
 - Alternative Model by Olander
 - Simulation results
- Summary and conclusion

Governing Equations

Transport equations for phenol, phenolate and OH-lons

- Problem: Magnitude of Reaction Rate constants k1, k2 undefined
 - Too high: model instabilities
 - Too low: incomplete chemical equilibrium
 - → Substitution of reaction rates

#	Bnd	Species	Condition	feed	stripping
1	z = 0	OH	Insulation		
2		Phat	Insulation		
3		Phol	$\dot{n}_{Phol} = k_{mem} \cdot \Delta c_{Phol}$		
4	z = L	Phol	$c_{Phol}^{z=L} = c_{Phol}^{stripp}$		
5		Phat	$c_{Phat}^{z=L} = c_{Phat}^{stripp}$		

6th boundary condition:

$$k_{mem} \left(c_{Phol}^{Feed} - c_{Phol}^{z=0} \right) \frac{c_{Phat}^{z=L}}{c_{Phol}^{z=L} + c_{Phat}^{z=L}} = D_{OH} \frac{\partial c_{OH}^{z=L}}{\partial z}$$

AACHENER VERFAHRENSTECHNIK

Numerical models and analytical solution (Olander)

Model for transmembrane phenol flow

$$\dot{n}_{Phol} = \left(c_{Phol}^{Feed} - c_{Phol}^{Perm}\right) \frac{1}{\frac{1}{k_{act}} + \frac{1}{E k_{por}}}$$

- Enhancement factor E dependent on chemical reaction
- Can range from
 - 1, no improvement of extraction
 - ∞, chemical reaction eliminates influence of porous structure
- \rightarrow Analytical solution for the calculation of E available
- → Olander's solution acts as benchmark for Comsol

Comsol results, concentration profile

- Rising pH leads to reduced phenol-levels in the porous structure
- Higher phenol-difference across the dense layer with increased pH
- Caustic soda effectively reduces apparent thickness of porous layer

Model verification: Enhancement factor

→ Model failure?

Model verification: mass flow

 \rightarrow E-factor of limited use

AACHENER VERFAHRENSTECHNIK

Summary and Outlook

- Lessons learned
 - Modeling of instantaneous reaction
 - \rightarrow shift from reaction rates to chemical equilibrium constant
 - Choice of boundary conditions
 - \rightarrow calculation of sodium hydroxide flow into the porous layer
 - Validation criteria
 - \rightarrow not as easy as it seems, validation by flow
- Outlook
 - Application of the model for the investigation of system parameters
 - Extension of the model to cover aspects like concentration polarization

AACHENER VERFAHRENSTECHNIK

Thank you!

