

Dissolution Modeling of Uniform Aqueous Droplets in Two-Phase Flow in a Microfluidic Device

COMSOL Boston Conference

October3-5, 2018

Selis Önel, PhD

Associate Professor
Dept. of Chemical Engineering
Hacettepe University
Beytepe, Ankara
selis@hacettepe.edu.tr

Fulbright Visiting Professor Center for Engineering in Medicine Harvard Medical School Massachusetts General Hospital Shriners Hospital for Children Boston, Massachusetts, USA

http://yunus.hacettepe.edu.tr/~selis

Outline

- Background and Motivation
- Biopreservation
- Novel microfluidic thermal system
- Mathematical modeling and simulation

Background

CPA: Cryo-protectant agent

Carbohydrate based CPAs are added to accommodate for ultrafast cooling rates required for vitrification CPAs prevent intra-/extra-cellular crystallization by increasing the glass transition temperature at the cost of toxicity.

Novel approaches:

Develop novel technologies for safer cryopreservation by

- modifying the protocols
- controlling the loading and concentration of CPAs in the cell prior to freezing.

Micro Channel Thermo-Fluidic Device

Harvard Medical School + MIT + MGH→ Center for Engineering in Medicine, Boston

Prevention of crystallization in biopreservation

Biopreservation Methods

In vitro culture

Replication of natural environment ex vivo

Storage at physiological T

- Tight control of physiological/physicochemical determinants
- Short term / Small amounts
- Continuous quality control and media replacement
- Costly

Vaccines, Monoclonal antibodies, Recombinant proteins, Cytokines, Other therapeutic agents

Hypothermic storage

Goal: Suppress molecular/biochemical reactions

Advantages

Inexpensive

Commercially available hypothermic preservation solutions

Disadvantages

Slowed cellular metabolism (not suppressed)

Cell damage

Short term

Dry preservation

Addition of agents less active than water

Trehalose, glycerol, dextran...

Removal of water from cell

Vitrification (glassification)

Long term storage @ T_{room} inexpensive

Cryopreservation

@ ultralow temperatures (<-150°C)

Freeze biological structure/function of living systems

- ✓ Relatively longer storage time
- Special equipment
- Specialized personnel
- Cell damage during freezing

Crystallization

Crystallization → Harmful Vitrification → Safe

Water → Glass

- 1. Cooling rate ~1000000 C/s
- 2. CPA7 Cooling rate >

 τ_D : Mass transfer timescale

 $\tau_{\mathbb{C}}$: Heat transfer time

Jw: Trans-membrane water flux

q": Heat flux

 $\tau_{\rm D}/\tau_{\rm C} > 1$

TD/TC=1

 $\tau_{D}/\tau_{C} < 1$

 $\tau_D/\tau_C <<1$

T: Temperature

Cell

 $\tau_{\rm D} = \frac{r}{3L_{\rm p}\Delta\Pi}$

Glass

 $\tau_{\rm C} = \frac{2c_{\rm p}\rho r\Delta T}{3q''}$

Selis Önel, PhD

Cooling rate

CPA effect

Human granulocytes
2M glycerol
>5 min → 50% viability

Engineering solutions

- ▶ Speeding up heat transfer and cooling → Down-sizing
- Reducing CPA concentration
- Reducing CPA exposure time
 - → Controlled CPA loading

Goal

Develop a novel micro-channel thermo-fluidic device to control and improve the rate of dehydration in biomaterials

- Produce uniform picoliter aqueous droplets in a mobile organic phase in continuous flow
- Optimise operating conditions of the device to establish a steady-state two-phase laminar flow following droplet formation
- Control the system thermally to allow for interphase diffusion of water
- 4. Encapsulate one or more cells per droplet

Microfluidic solution

- Microchannel device made of poly-dimethyl-siloksane (PDMS)
- Hydrophobic surface
- Organic phase: Soybean oil— triacylglycerol water solubility f(T) 0.3%

Mechanism

- Inverted fluorescence microscope and camera
- Syringe pump system with micro-flow control

▶ ITO heater, micro T sensor, micro T control and power system

Micro-channel thermo-fluidic device

Pictures in phase

Mathematical Model

- COMSOL.Multiphysics
- MATLAB

Conservation of mass Ficks 2nd law

$$J_{i} = -D \cdot \nabla C_{i} + u \cdot C_{i}$$

$$\frac{dC_{i}}{dt} = \nabla \cdot (D \cdot \nabla C_{i}) - u \cdot \nabla C_{i}$$

Laminar flow
Conservation of
momentum
Navier-Stokes equations

$$\rho \nabla \cdot u_i = 0$$

$$\rho \cdot \frac{\delta u_i}{\delta t} + \rho (u_i \cdot \nabla) u_i = \nabla \cdot \left[-p_i + \mu (\nabla u_i + (\nabla u_i)^T) \right] + F_i$$

Flow in channel Newton's 2nd law

$$U_i = \left(r_i^2 - \frac{w^2}{4}\right) \cdot \frac{\Delta P}{L \cdot \mu \cdot 2}$$

COMSOL Multiphysics® Tools

Mathematical model: Unsteady state

Two-phase flow & Mass transfer through a moving boundary layer

-Transport of Diluted Species interface: Calculation of mass transfer

Thin Diffusion Barrier boundary condition used to create the effect of a cell membrane.

- -Laminar Flow interface for the calculations of fluid flow
- -Moving Mesh interface to create the moving boundary during shrinkage of aqueous droplets.

Curve-fits in MATLAB®: Fluid flow parameters (relative velocity) from the resulting data imported from the Legal and exported back

Intra/Extracellular water and glycerol concentration profiles

Aqueous concentration in oil - COMSOL

Aqueous concentration in oil - MATLAB

Intra-/Extra-cellular concentration of glycerol

Flow concentration profiles-COMSOL

In-channel aqueous concentration profile during flow

Aqueous concentration profile during flow (rare droplets)

Glycerol concentration profile in droplet and cell

Preconcentration with CPAs up to 10x(initial concentration) in <4 min via microfluidic method → Possible

Conclusion

- Preconcentration of cells in dehydrating picoliter aqueous droplets has proven to be a promising method by:
 - Reducing the exposure time of cells to CPAs,
 - Eliminating the multistep CPA loading-diluting procedures, and
 - Avoiding the mechanical and osmotic stresses caused by large concentration differences.

On going:

Performance tests on the MEMS device without and with various cell lines

Thanks for support from:

- The Scientific And Technological Research Council of Turkey, TÜBİTAK (Project No: 214M323)
- Hacettepe University Scientific Research Office (BAP)
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, USA

Problems with freezing

- ► T>Tg → Crystallization: Intra/extra cellular ice formation during freezing
- ▶ CPA at high concetration →Tg
- Intra/extracellular osmotic pressure differences
- Long time exposure to chemicals
- Electrolyte unbalance
- Cell shrinkage due to water removal

All cause damage on cell and its organelles during freezing