

COMSOL在金属氢化物贮氢罐传热 Liě 大学 COMSOL在金属氢化物贮氢罐传热 Liě 大学 COMSOL在金属氢化物贮氢罐传热

林羲1,朱琦2,李谦1,3,*

1. 上海大学材料基因组工程研究院,上海,中国

2. 上海大学机电工程与自动化学院,上海,中国

3. 上海大学材料科学与工程学院及省部共建高品质特殊钢冶

金与制备国家重点实验室,上海,中国

目录

- 1、研究背景
- 2、模型建立
- 3、模拟结果
- 4、结论

金属氢化物贮氢罐---氢气及其同位素的 长期储存、吸放装置

 $M + \frac{x}{2}H_2 \Leftrightarrow MH_x$

- 燃料电池汽车应用
- 热核聚变中氘和氚的存储
- 固定式储能装置
 - <image>

ZrCo贮氢罐性能指标

性能	指标	
储氢量n _{H2}	>5 mol	
吸氢压力P	5 kPa	
吸氢温度T	60°C (333 K)	
吸氢速率Rate	1.5 NL min ⁻¹	

主要改变的结构或填充参数:

贮氢罐直径d
 贮氢罐高度L
 粉末床孔隙率ε
 撮作条件
 温度T
 压力P
 (模拟得到)

吸氢速率的影响因素及其规律

性能指标	影响因素	一般规律	贮氢罐性能指标不足的原因
吸氢速率/ 放氢速率	温度T(主要因素)	T↑,速率↓	粉末床 <mark>有效热导率</mark> 低至1 W m ⁻¹ K ⁻¹ ,传热特性差
	压力P(主要因素)	P↑,速率↑	粉末床 <mark>渗透率</mark> 低至10 ⁻¹³ -10 ⁻¹⁵ m ² ,传质特性差

- 粉末床传热、传质特性是影响吸氢速率的最主要的因素;
- 以ZrCo吸氢为例,合金材料的可以在60℃下,5min内完成吸氢。但 是在贮氢罐中,由于粉末床温度升高(平均温度升高约100℃-150℃)
 和压力减小(平均压力下降到平衡压),贮氢罐的吸氢速率无法达到 指标要求!

数值模拟模型及基本假设

 Π H₂

Peripheral surface wall

贮氢罐示意图

基本物理化学过程

- 氢气在粉末床中流动,顶部
 入口压力恒定
- 粉末床中合金发生吸氢反应,
 放出热量并消耗氢气
- 热量粉末床中传热,并被外
 表面和底部的换热流体带走

基本假设

- 氢气为理想气体
- 粉末床作为多孔介质处理,符合达西定律
- 局部热平衡假设,并忽略辐射传热
- 热物性质保持不变

5

动量及连续性方程

恒压、无滑移边界

热力学和动力学方程

传热方程

+

绝热、对流换热边界

传热方程及绝热、对流换热边界

• 传热方程

 $\overline{\rho C_{P}} \frac{\partial T}{\partial t} + \nabla \bullet (\rho_{g} C_{Pg} \vec{u} T) = \nabla \bullet (\lambda_{e} \nabla T) + S$

$$S = \frac{\rho_s (1 - \varepsilon)}{M_{H2}} \frac{M_H}{M_M} \frac{\partial (H/M)}{\partial t} \Delta H$$

缩写

-11-	1-7		ト丙二	
•	C _p	比热容	• S	固体
•	ρ	密度	• 0	气体
•	λ	热导率	• H	氢原子
•	ΔH	吸氢焓变	• H2	氢分子
•	β	颗粒体积比	• •	五六 有效的
•	3	孔隙率	• M	合全
•	ξ	反应分数	• 0	口 <u>亚</u> 初始
•	h	换热系数	- 0	177 221
_		与 西 フ 和 人 人	ハマ麻	たし

• H/M 氢原子和合金分子摩尔比

- 传热方程中相关参数方程 密度热容乘积:
 $\overline{\rho C_p} = \epsilon \rho_g C_{pg} + (1-\epsilon) \rho_s C_{ps}$ 有效热导率:
 $\lambda_e = \epsilon \lambda_g + (1-\epsilon) \lambda_s$
- 考虑吸氢过程的体积膨胀:
 文献中普遍未考虑体积膨胀的对孔隙率的影响,我们引入孔隙率随反应分数变化为:
 ε=1-(1-ε₀)[1+(β-1)ξ]
- 绝热及对流换热边界

$$\frac{\partial T}{\partial \vec{n}} = 0, \quad -\lambda_e \frac{\partial T}{\partial \vec{n}} = h_e (T - T_f)$$

动量方程、连续性方程及恒压、无滑移边界

• 动量方程(达西定律)

 $\vec{u} = -\frac{K}{\mu_g} \nabla P$

- 连续性方程
 - 考虑体积膨胀后,对连续性方程源 项进行修正

$$\frac{\partial \varepsilon \rho_g}{\partial t} + \nabla \bullet (\rho_g \vec{u}) = -S$$

$$S = \rho_s (1 - \varepsilon_0) \frac{M_H}{M_M} \frac{\partial H/M}{\partial t}$$

缩写

µg 粘度系数

 动量方程中相关参数方程 氢气粘度系数:

$$\mu_g = 9.05 \times 10^{-5} (\frac{T}{293})^{0.68}$$

• 恒压、无滑移边界

$$P = P_0 \quad \frac{\partial P}{\partial \vec{n}} = 0$$

热力学方程

• 热力学方程

$$P_{eq} = f(\mathrm{H/M})\exp(-\frac{\Delta H}{R}(\frac{1}{T} - \frac{1}{T_{ref}}))$$

- f(H/M)为参考温度下的P_{eq}-H/M关系, 通过多项式拟合得到
- ZrCo在433K下的f(H/M)

 $f(H/M) = -242 + 3728H/M - 16673H/M^{2}$ +41866H/M³ - 65004H/M⁴ +65867H/M⁵ -44522H/M⁶ +19703H/M⁷ - 5217H/M⁸ +627H/M⁹

- 平衡压和温度、吸氢量的关系曲线;
- 压力低压当前温度的平衡压,吸氢反应停止;
- 平衡压影响吸氢动力学;

初始氢压Po

材料的热物性参数		参数		参数值	
	密度	$f\rho(\text{kg m}^{-3})$	ZrCo	7628	
	比执家	比热容C _p (J kg ⁻¹ K ⁻¹)		381	
	口公子			14890	
	执导率	热导率λ (W m ⁻¹ K ⁻¹) 吸氢焓变Δ <i>H</i> (kJ mol ⁻¹) 吸氢活化能 <i>E</i> _a (kJ mol ⁻¹) 标准速率常数 <i>k</i> ₀ (s ⁻¹) 颗粒体积比β		3.140	
	201 - 1			0.167	
	吸氢焓到			-74.66	
	吸氢活化			13.00	
	标准速			0.15	
				1.20	
模拟相关参数					
参数名	参数值及单位	参数名	参数值及单位		
贮氢罐内径d	4-20 cm	初始孔隙率 ε 。	0.4, 0.5, 0.6		
贮氢罐高L	4-20 cm	有效换热系数h _e	100 W m ⁻¹ K ⁻¹		
初始温度To	333 K	换热流体温度 T f	333 K		

5000 Pa

初始吸氢量H/M₀

0

方程间的耦合

变量间的关系线

- 内圈顺时针循环:
 - $H/M \rightarrow P \rightarrow u \rightarrow T$
- 外圈逆时针循环
 - $H/M \rightarrow T \rightarrow u \rightarrow P$
- 温度与压力
 - T↔P

11

- COMSOL Multiphysics 5.3软件进行二 维轴对称建模
- 采用了多孔介质传热、达西定律和域
 常微分和微分代数方程模块
- 网格采用的是流体动力学下的较细化
 网格。
- 求解器采用全耦合下的自动高度非线 性对模型进行求解。

ZrCo贮氢罐模拟结果和实验结果对比

ZrCo贮氢罐模拟和实验数据对比

• 模拟结果和实验结果对比良好, 说明**ZrCo**模型的可靠性和准确性

ZrCo贮氢罐吸氢容量

- d和L的增加, 贮氢罐容积增加, 可填充的合金体积增加, 吸氢量 增加
- 孔隙率降低,相同体积下可存储
 的合金量增加,吸氢量增加
- d=L=20 cm、ε=0.4时具有最大吸 氢量210.60 mol

d、L和ε对ZrCo 吸氢量的影响

ZrCo贮氢罐吸氢速率

- ②组孔隙率对速率影响的不同,主 要是由于:L较小和d较大时,压力 和温度均是主要影响因素,当孔隙 率增加时,热导率下降,渗透率增 加,吸氢速率出现向增后减的情况。
- d=L=20 cm, ε=0.6时具有最大吸氢
 速率,其值为15.77 NL min⁻¹,此时
 储氢量为140.34 mol
- 当储氢量为5 mol左右时,具有最 大吸氢速率的参数值为: d=8 cm, L=4 cm, ε=0.5,此时储氢量为5.61 mol,吸氢速率为2.79 NL min⁻¹

总结

- 构建了ZrCo贮氢罐吸氢传热、传质、热力学和动力学方程来描述贮氢 罐的吸氢过程。
- 通过COMSOL软件对构建的方程进行求解,模拟得到不同贮氢罐直径
 d、高度L和孔隙率ε值下的吸氢容量和吸氢速率值。
- 对比贮氢罐的吸氢速率指标,筛选优化出符合要求的贮氢罐结构。
- 对比了不同直径和高度范围内,吸氢速率随孔隙率的变化规律,发现
 吸氢压力是主要的影响因素。而在d较大,L较小的时候,温度的作用
 也会突显。

谢谢!