Effects of Shear-thinning and Elasticity in Flow around a Sphere in a Cylindrical Tube

Daoyun Song¹, Rakesh K. Gupta¹ and Rajendra P. Chhabra² ¹West Virginia University, Morgantown, WV ²Indian Institute of Technology, Kanpur, India

> Presented by Daoyun Song October 7, 2010

Introduction

Flow around a sphere in cylindrical tubes filled with both purely viscous and viscoelastic liquids is of practical and fundamental interest.

- Fixed or fluidized bed
- Falling ball viscometry
- Emulsion or suspension processing
- Filled polymer melts processing
- Sphere sedimentation in viscoelastic fluids is a benchmark problem in the computational rheological community

Governing equations and boundary conditions

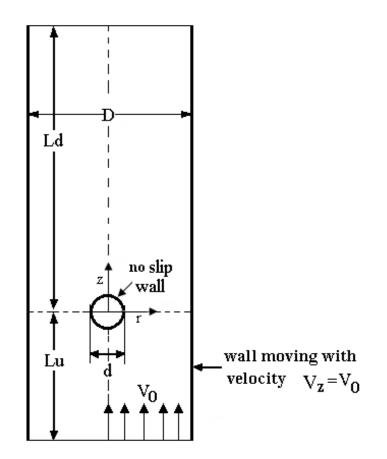
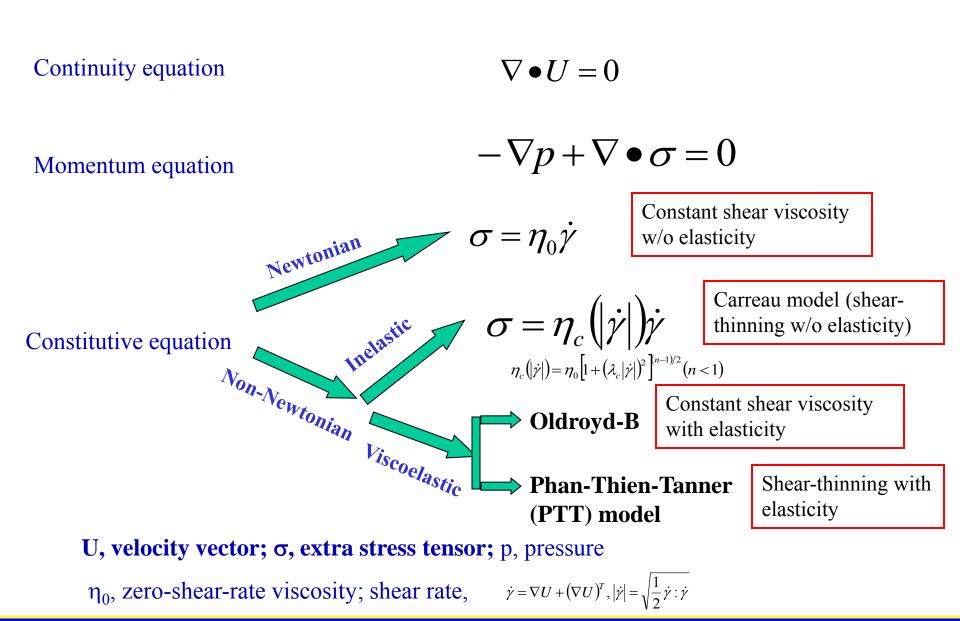


Figure 1. Schematic diagram of flow around a sphere in a tube

(Lu=10R, Ld=30R, d/D=0.5)

Governing equations



Oldroyd-B

$$\sigma + \lambda_1 \overset{\nabla}{\sigma} = \eta_0 \left(\dot{\gamma} + \lambda_2 \overset{\nabla}{\dot{\gamma}} \right)$$

 λ_1 and λ_2 are the relaxation and retardation times, respectively.

$$\overset{\nabla}{\sigma} = \frac{\partial \sigma}{\partial t} + (u \cdot \nabla) \sigma - (\nabla u^T \cdot \sigma + \sigma \cdot \nabla u)$$

Momentum equation

 $-\nabla p + \nabla \bullet \sigma = 0$ No diffusivity term

Trick: Elastic Viscous Split Stress (EVSS)

 $\sigma = \eta_N \dot{\gamma} + \tau$

 $-\nabla p + \nabla \cdot (\eta_N \dot{\gamma}) + \nabla \cdot \tau = 0 \qquad \text{with diffusivity term}$

$$\tau + \lambda_1 \dot{\tau} = \eta_E \dot{\gamma}$$

$$\eta_0 = \eta_N + \eta_E, s = \eta_N / \eta_0 = \lambda_2 / \lambda_1$$

Phan-Thien-Tanner (PTT) model

$$\tau + \lambda_1 \overset{\nabla}{\tau} + \varepsilon \frac{\lambda_1}{\eta_E} tr(\tau)\tau = \eta_E \dot{\gamma}$$

 ϵ , extensibility parameter, determining the shearthinning behavior & extensional viscosity ϵ =0.02 -> polymer solutions ϵ =0.25 -> polymer melts

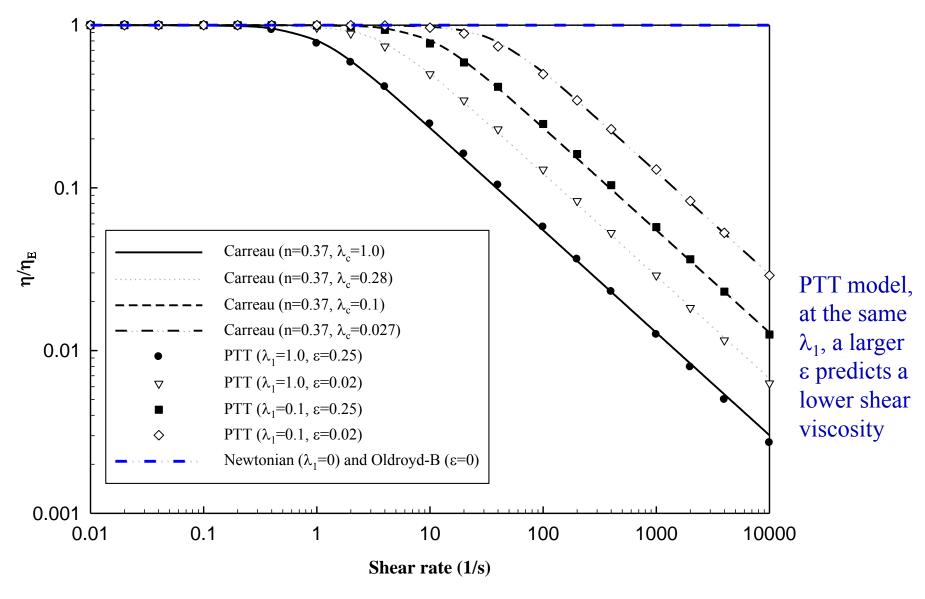


Figure 2. Shear viscosity vs. shear rate

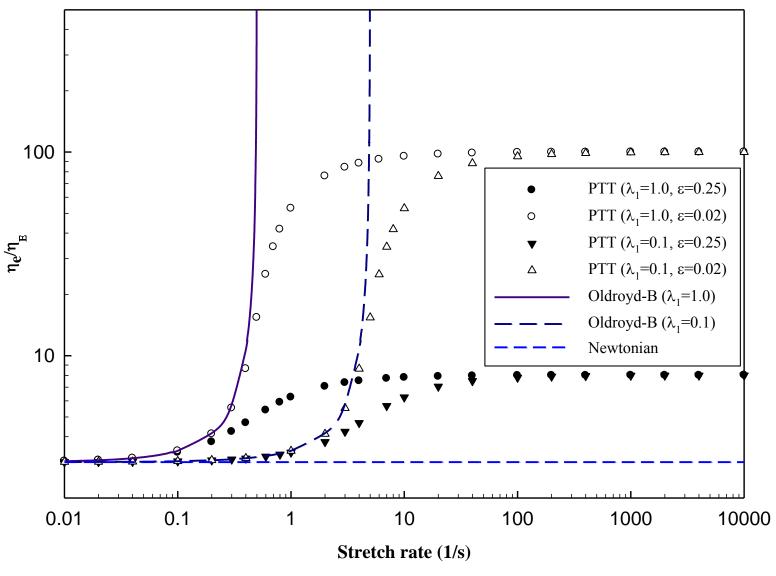


Figure 3. Extensional viscosity vs. stretch rate

PTT model, at the same λ_1 , a larger ϵ predicts a lower extensional viscosity

Boundary conditions

Inlet
$$u_r = 0, u_z = V_0, \tau_{rr} = \tau_{rz} = \tau_{\theta\theta} = \tau_{zz} = 0$$
On the tube wall $u_r = 0, u_z = V_0$ On the sphere surface $u_r = u_z = 0$ Symmetry $u_r = 0, \tau_{rz} = 0$ ExitPressure =0, no viscous stress

Dimensionless number: Deborah number (De, a measure of elasticity)

$$De = \lambda_1 \frac{\overline{u}}{R}$$

R, radius of the sphere; \overline{u} , mean velocity

Drag force
$$F = \int_{\partial \Omega} [(-pI + \sigma) \cdot n] \cdot e_z \, ds$$

Drag coefficient
$$K = \frac{F}{6\pi\eta_0 \overline{u}R}$$

Simulation procedure

- 1. COMSOL Multiphyscis (3.5a)
- 2. Quadrilateral elements
- 3. Element choices:

Velocity-pressure coupling, Lagrange- $P_2P_{1;}$ Stresses, Lagrange-Linear

4. For Carreau fluid flow, Non-Newtonian Flow Module

- 5. For viscoelastic fluids flow, combination of Incompressible Navier-Stokes Module (momentum equation and continuity equation) and PDE mode (constitutive equation)
- 6. Direct UMFPACK and Parametric Solver

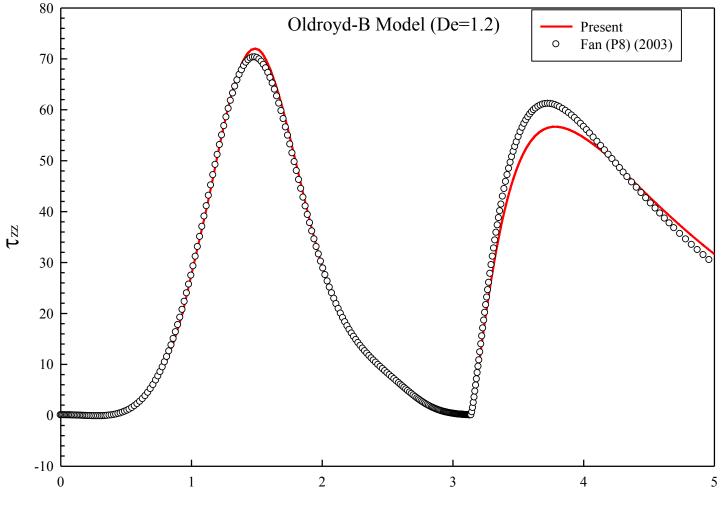
Results and discussion

Validation

Table 1. Comparison of drag coefficient (Oldroyd-B, s=0.5)

De	Present	Lunsmann et al. (1993)
0.0	5.94739	5.94716
0.3	5.69385	5.69368
0.6	5.41221	5.41225
0.9	5.25654	5.25717
1.2	5.18493	5.18648
1.5	5.16132	5.15293

Validation



Length (0 is the front stagnation point, π is the rear stagnation point)

Figure 4. Comparison of τ_{zz} along the sphere surface and in the downstream center line

Effects of shear-thinning and elasticity on drag coefficient

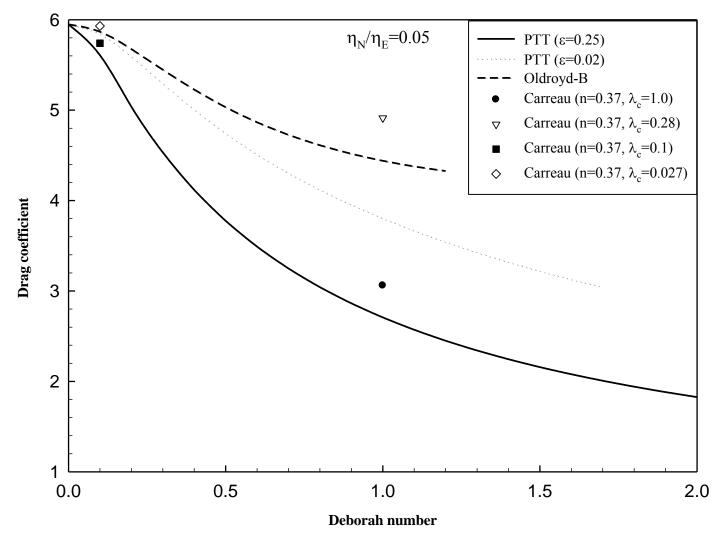
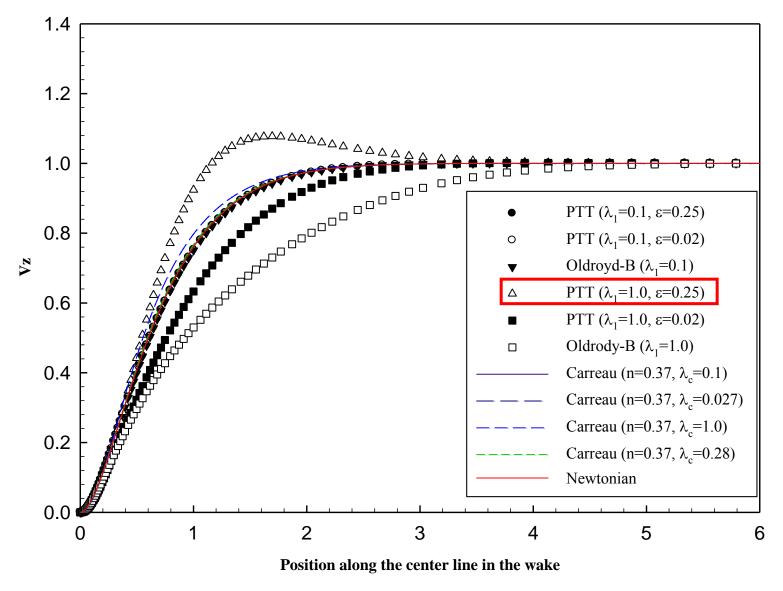
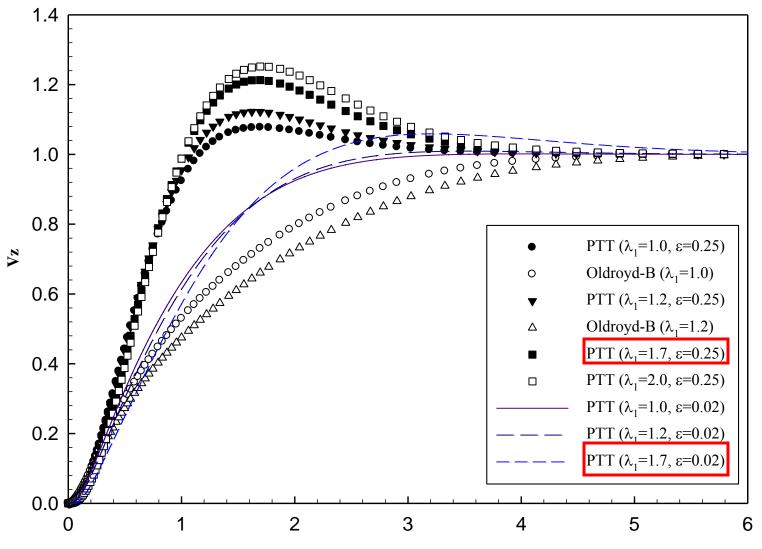


Figure 5. Drag coefficients at different constitutive equations



Effects of shear-thinning and elasticity on velocity overshoot

Figure 7a. Velocity at the downstream center line with $\lambda_1 \leq 1.0$



Position along the center line in the wake

Figure 7b. Velocity at the downstream center line with $\lambda_1 \ge 1.0$

Conclusions

- Both elasticity and shear-thinning lead to a reduction in drag coefficient
- Neither elasticity nor shear-thinning alone gives rise to velocity overshoot at the downstream center line
- Velocity overshoot should be attributed to the synergistic effect of shear-thinning and elasticity behaviors

Acknowledgements

- Dr Craven and Prof Zimmerman from University of Sheffield, UK and Prof Finlayson from University of Washington for helps of implementation of viscoelastic model into COMSOL
- Prof Fan from Zhejiang University, China for providing us original data

Thanks

