Presented at the COMSOL Conference 2010 Paris

Laser Interstitial Thermo Therapy (LITT) for Prostate Cancer: Animal Model, Numerical Simulation of Temperature and Damage Distribution

Mohamad Feras MARQA^{*1,2}

P. Colin^{1,2,3}, P. Nevoux^{2,3}, S. Mordon^{1,2} and N. Betrouni^{1,2}

¹University of Lille 2 ²Inserm, Unit 703, CHRU of Lille ³Department of Urology, CHRU of Lille

feras.marqa@chru-lille.fr

Background: Laser Interstitial Thermotherapy (LITT)

- Minimally invasive thermal technique
- Addressed to coagulate deep and solid tumors
- Tested in various tumors: breast, brain, kidney, Liver,
 and recently for low risk prostate cancer

Applications of LITT in the Unit 703

• In liver metastases (guidance with real-time MR images) (Viard et al. Conf Proc IEEE Eng Med Biol Soc, 2007)

• Development of new diffusing fibers used for LITT method (patent pending N°. 08008613.5)

• **Pro-LITT project :** Development of a protocol on a preclinical model of *prostate cancer* using LITT method

Objective

Heat extent in prostate tissues

 Volume of necrosis estimated after prostate thermal laser treatment

Material and Methods: Experimental model (1/3)

Copenhagen rat

Material and Methods: Experimental model (2/3)

Diode laser unit (Pharaon 980, Osyris)
 Wave length of 980 nm
 Diffusing fiber :

- Diffusing fiber :
 (10 mm, d = 500 μm)
- Maximal power output 5 W
 Diffusion time = 75 s
- Maximum temperature measured = 155 ℃

Material and Methods: Experimental model (3/3)

• MR images performed after 48h

Material and Methods: Simulation model (1/4)

• COMSOL Multiphysics 4.0

Tissues $(70 \text{ mm} \times 70 \text{ mm} \times 20 \text{ mm})$

- Fiber (L=10.0 mm, d=500 μm)

Material and Methods: Simulation model (2/4)

2 – Heat distribution

Material and Methods: Simulation model (3/4)

Material and Methods: Simulation model (4/4)

Physical parameters of the rat used in numerical simulation:

$\lambda = 980 \ nm$	Parameters	Values	
Thermal coefficients	$C (J.g^{-1}.^{\circ}K^{-1})$	4.20	
	$ ho$ (g. mm^{-3})	0.999×10^{-3}	
	$h(W.mm^{-1}.°K^{-1})$	5.52×10^{-4}	
	$w_b \ (ml.g^{-1}.min^{-1})$	0.10	
Tissue Damage Coefficients	$A_{f}(s^{-1})$	1.50×10^{101}	
	E_a (J. mole ⁻¹)	6.33×10^{5}	
	R (J.mole ^{−1} .°K ^{−1})	3.41847	

J.C. Bischof, D. Smith, P.V. Pazhayannur, C. Manivel, J. Hulbert, and K.P. Roberts, Cryosurgery of Dunning AT-1 Rat Prostate Tumor: Thermal, Biophysical, and Viability Response at the Cellular and Tissue Level, *Cryobiology*, **34**:42–69 (1997).

Results

1 – Heat distribution

Results

2 – Thermal damage

Results

	Experiment	Simulation	Deviation
Maximum heat diffused	155 C°	156.6C°	≈ 1%
Volume of thermal damage	$0.98 \pm 0.05 ~{ m cm^3}$	1.00 cm ³ when T=50℃,	< 1 %

Conclusions

• LITT treatment of prostate cancer is a promising method

- The heat extent in tissues and thermal damage can be estimated by simulation
- Results presented from simulation are in good agreement with the experimental results
- This therapy needs further evaluation and understanding of the heat extent in tissues to become a surgical method applied in a routine hospitalization²

THANK YOU

