

ENGINEERING GROWTH PIONEERING EXCELLENCE

Electrical & Mechanical Analysis of Trafoconnect

Raghav Upasani, Nitin Pandey, Ishant Jain

Raychem RPG (P) Ltd. Halol, Gujarat

Introduction

Raychem RPG

Transformer connectors is a device which links LV side cable with secondary side transformer bushing

Conventional System Crimped & Bolted Connection

- High I²R losses
- Many connections causes hot spots
- Heavy weight
- Oil leakage

Raychem's Trafoconnect

- Low I²R losses
- No crimping required
- Light weight
- Reliable, insulated & safe connection
- Design Patent No: 293138

Need for FEA Analysis

Every supplier has to do type test on electrical equipment's based on customers requirement as per IEC Standards.

Expensive & Time consuming

To determine the correctness and efficiency of a design before the system is actually constructed

Problem Definition

> To carry out **short circuit analysis** of the connector as per IEC 61238

To simulate tensile loading test of the connector as per IEC 61238

Short Circuit Analysis as per IEC 61238 Raychem RPG

FEM analysis details- Short circuit current - **40kA for 3 sec as per IEC 61238** with an initial peak of 100 kA

A.) Incoming Short Time Current to Copper Bushing

Boundary Conditions in FEM

Magnetic and Electric Field (mef)

Incomer @ A.) – $40000*\sqrt{2}*(e^{(-t/0.045)}-\cos(2*pi*50*t))$ Outgoing @ C.) – to all outgoing conductors. Time – 0.04 sec (2 cycles) Lorentz Force was maximum at 0.01 sec (Fig.2)

Solid Mechanics (solid)

Volume force – Lorentz Force Contribution Fixed Constraint @ A.) & C.) – to all outgoing conductors.

Fig.2 Decaying waveform to terminal having initial peak of 100 kA

Results – Magnetic & Electric Field

Lorentz Force vs Time – Incoming Stud

Raychem RPG

Lorentz Force vs Time – Outgoing Cables

Raychem RPG

Raychem RPG

Magnetic Flux density and Lorentz Force Distribution

Lorentz force contribution – x component

Raychem RPG

Results – Solid Mechanics

Discussion on SC test analysis

- Lorentz force contribution was a sinusoidal wave with decreasing amplitude corresponding to incoming sinusoidal wave.
- Lorentz force contribution was maximum at the incoming stud at 0.01 sec
- Maximum stress induced due to Lorentz force was 0.45 MPa and total deformation was 0.14 μm.

Tensile Load Analysis as per IEC 61238 Raychem RPG

FEM analysis details- Tensile load of **55 Kg is applied then increased to 110 Kg** and maintained for 1 min **as per IEC 61238**

Boundary Conditions in FEM

Multibody Analysis

Fixed Constrain @ A.) Tensile Load @ C.) – to all outgoing conductors. Contact pressure was varied over conductor to obtained optimum value

Force Function:- F = 539.55+35.97*t $0 \le t < 15$ = 1079.1 $15 < t \le 75$

B.) Aluminum Trafo Connector 4x400

Results – Displacement & Stress Raychem RPG

Displacement of 8 mm for 8.3 MPa Contact Pressure

Displacement of 0.45mm for 10 MPa Contact Pressure

Displacement of 0.6 mm for 9 MPa Contact Pressure

Discussion on Tensile load analysis

The optimum value of contact pressure 10 MPa was obtained to analyze movement of conductor with connector

Accordingly, shear headed bolts were selected having high contact pressure to resist movement of conductor

Methodology for SC analysis was established for the 1st time which can be implemented to other electrical equipment like feeder pillars, connectors, etc.

Simulation of SC test & Tensile Test using COMSOL was integrated during product development process

Both the test were validated with the type test at ERDA, Vadodara

Acknowledgement : Chiraj Kothari, Pankaj Nerikar & Damini Singh

THANK YOU

