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Abstract: In this paper we introduce a elastic 
and hyperelastic model to describe the 
biomechanics of joint cartilage. As 
biomechanical property we calculated the 
pressure dependent E-modulus E = f(s) to 
describe the dependence of the biomechanical 
properties on pressure. The calculation based 
on the comparison and the iterative approach 
of the force-way-functions between the 
experiments and simulations. In this first study 
we found that the E = f(s) is a degree 4 
polynomial. The E-modulus varies between  
0 - 2.9 MPa for the elastic and between  
0 - 2.2 MPa for the hyperelastic material 
model by a compression from 0 – 0.4 mm 
caused by a surgery tasthaken. The pressure 
dependent E-modulus allows us to simulate the 
nonlinear behaviour of compressed cartilage 
tissue. 
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1. Introduction 

 
The biomechanical properties have much 

relevant information for the functional 
characterisation of cartilage tissue [1]. In the 
process the modulus of elasticity E is typically 
evaluated for a defined pressure applied to the 
cartilage tissue. This single observation 
neglects the dependence of the biomechanical 
properties on pressure. In this case the pressure 
dependent E-modulus E=f(s) with the help of 
experimental force-way-indentation data by 
means of an elastic and hyperelastic material 
model is calculated. The aptitude of the models 
is evaluated by the comparison with 
experiments and simulations. 
 
2. Experimental Methods 

 
In the experiment, the force-way-diagram 

was dictated by the pressure of the cartilage 
tissue by means of an indentor. The geometry 
and dimensions of the indentor are similar to a 

1mm diameter surgery tasthaken. The 
experiment was carried out on knee joints of 
pigs (deceased, age: 0.5 years, female). 10 
force-way-diagrams were carried out at the 
femur condyle medial to obtain the averaged 
force-way-diagram for the comparison with the 
simulation. The measurements of the cartilage 
thickness resulted in 1.3 mm. 
On the linear stage (acceleration 4 mm/s², 
speed 3 mm/s) the indentor was pressed 
0.4 mm into the tissue. The resulting pressure 
force was recorded on a force sensor. Figure 1 
shows the experimental measuring system to 
study the biomechanical behaviour of 
cartilage. 
 

 
 
Figure 1. Experimental measuring system to study 
the biomechanical behaviour of cartilage. 
 
3. Simulation Methods  
 

The preparation of the models is carried 
out according to the plane stress analysis type. 



The modelling is compiled into an elastic and 
hyperelastic material model. The model was 
configured in concordance with the experiment 
so that the indentor was placed on the cartilage 
containing a bone layer. Then the indentor was 
adjusted along the Y-axis. This adjustment in 
Y-direction was ceased in the subdomain 
constrain settings. 
The pressure force F along the Y-axis was 
calculated by the integration of the stress σ 
over the contact zone between the indentor and 
cartilage. For the construction of the model the 
indentor as well as the cartilage and bone layer 
were modelled schematically in the 2D draw 
mode (figure 2). The lower boundary of the 
bone layer was chosen fixed in the boundary 
constraint settings. 
 

 
 
Figure 2. Model geometry and material properties. 
 
3.1 Equations of the elastic model 

 
A linear elastic material model [2] was chosen 
for the indentor and the bone layer and is 
described by the following equations: 
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with 
 S – Second Piola-Kirchhoff stress 
   u - Displacement gradient 
 F – Deformation gradient 
 v – Left stretch tensor 
 σ – Cauchy stress 
 ε – Green strain 
 ε0 – Initial strain 
 I – Identity tensor 

 T – Present Temperature 
 Tref – Stress free reference Temperature 
 α – Thermal expansions vector 
 
Also a linear elastic material model was 
chosen for the cartilage layer and is described 
by the following equations: 
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3.2 Equations of the hyperelastic model 

 
A linear elastic material model was chosen for 
the indentor and the bone layer and the 
equations are described above. For the 
cartilage layer a hyperelastic material model 
(Neo-Hookean) [2] was chosen and is 
described by the following equations: 
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with 
 Ws – Strain energy function 
 μ, λ – Lame elastic constants 
 Jel – Elastic deformation gradient 
 I1 – Scalar invariant of C (the right  
        Cauchy-Green deformation tensor) 
 
3.3 Material properties 

 
For both models, the material properties are 
assigned as follows: Poisson ratio ٧, E-
modulus and the thickness d of the cartilage 
layer (٧ = 0.49, E = f(s), dC = 1.3 mm) with 
the neighboring bone layer (٧ = 0.3, 
E = 20 GPa [3], dB = 2 mm) as well as for the 
indentor (٧ = 0.3, E = 210 GPa).  
 
 

 

 



3.4 Mesh properties and element quality  

 
Due to the great differences between the  
E-modulus of the indentor (master) and the 
cartilage (slave) a contact pair was created. 
Based on this contact condition, the cartilage 
boundaries were meshed two times finer than 
the indentor boundaries [2]. Figure 3 shows the 
mesh. There are 2117 mesh points, 3922 
triangular, 354 boundary and 11 vertex 
elements. In figure 4 the element quality of the 
mesh is shown. The minimum element quality 
is 0.85.  

 

 
 
Figure 3. Mesh initialization for Indentor (master), 
cartilage (slave) and bone.  
 

 
 
Figure 4. Mesh element quality for Indentor 
(master), cartilage (slave) and bone. 
 
3.5 Model solving 

 
The model was solved by a parametric solver. 
It was used the linear system solver Direct 
UMFPACK. The parametric properties initial 
step size of 0.005, minimum step size of 0.05 
and maximum step size of 0.2 were chosen. 
The calculations of the pressure dependent 
modulus of elasticity were carried out by the 
comparison and the iterative approach between 

the experimental and simulated force-way-
function by a degree 4 polynomial. For the 
approach we need an initial polynomial, which 
is calculated from the slopes dF/ds of the 
experimental force-way-function and 
substituted in the equation  
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for the hyperelastic material model. These 
equations were calculated from simulations 
with E-modulus 1, 5, 10, 15 and 20 MPa and 
the averaged slopes from the associated  
simulated force-way-functions. 
The iterative approach was carried out with 
MATLAB® 2010b and the simulation with 
COMSOL® Multiphysics 3.5a.  
 
4. Results 
 

In figure 5 the experimental context F=f(s) 
is depicted in comparison with the simulation 
for both material models. The function F=f(s) 
is not linear. The simulated values lie within 
the range of dispersal of the experiment. The 
simple models observed here show a very 
good consensus between the simulation and 
experiment. 
 

 
 
Figure 5. Simulation results in comparison with the 
experiment for elastic and hyperelastic material 
model. 
 

http://www.linguee.de/englisch-deutsch/uebersetzung/associated.html


The function E = f(s) is depicted for both 
material models in figure 6. 
The E-modulus varies between 0 - 2.9 MPa for 
the elastic and between 0 - 2.2 MPa for the 
hyperelastic material model. At s = 0.11 mm, 
the slope (dE/ds)elastic = 16 MPa/mm and 
(dE/ds)hyperelastic = 12 MPa/mm is maximum. 
From s = 0.34 mm dE/ds ≈ 0 MPa/mm. 
 

 
 
Figure 6. Calculation of the pressure dependent 
modulus of elasticity for elastic and hyperelastic 
material model. 
 
5. Conclusions 

 
By means of the elastic and hyperelastic 

material models and the use of experimental 
data a pressure dependent E-modulus was 
determined. For the chosen pressure profile 
both the material models deliver comparable 
results. The knowledge of the pressure 
dependent E-modulus allows for the 
simulation of tissue deformation as well as the 
stress distribution in the joint cartilage for 
dynamic pressure, by which the elastic 
properties prevail over the viscous properties. 
Further work will expand the material models 
for example with the biphasic or triphasic 
theory [4]. 
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