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Abstract: Pore-scale modeling of multiphase 
flow of petroleum reservoir fluids through real 
natural porous media is a true challenge for 
engineering and scientific society. Because the 
pore-scale description is a fundamental 
approach in hydrodynamics it is addressed 
most frequently to improve our understanding 
of flow and transport phenomena in such 
settings. Besides, it can be used to obtain 
macro-scale constitutive equations, to provide 
multiphase flow properties for large scale 
models, to predict how these properties may 
vary with rock type, wettability etc.  
      One of the important aspects of this 
problem is the construction of adequate 3D 
numerical models of flow through pore space. 
With the recent development of computed 
micro-tomography (μCT) technique it becomes 
evident that direct numerical simulations 
(DNS) at pore-scale will be widely used in the 
porous medium modeling and particularly, in 
petroleum applications. The geometrical 
description of flow region via X-ray μCT, the 
generation of a 3D grid in real pore space and 
the corresponding flow computations, 
constitute the principal objective of our current 
work. For a simulation of fluid distribution 
inside pores the models based on 
incompressible Navier-Stokes equations and 
their extension to diffuse interface (Cahn-
Hilliard) model are used. 
      Transport properties for single- and two-
phase flow, stationary and transient flow 
patterns at various viscosity ratio and capillary 
numbers, the offset of the displacement 
instability, numerical performance of diffuse 
interface model in a specific 3D framework, 
are presented and discussed in some details.  
     The developed methodology of a porous 
medium properties computation is a valuable 
tool for both fundamental porous medium and 
applied petroleum and environmental 
applications.  
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1. Introduction 

 
The fast and continuous development of 

computers power, architecture and 
computational performance gives rise to the 
problem formulations and solution approaches 
which until recently seemed to be 
inappropriate for practical use.  

Among them were direct numerical 
simulations (DNS) and/or measurements of 
flow in real pore space. During decades the 
direct pore-scale modeling (PSM) was 
frequently considered impossible and therefore 
senseless because the flow fields could not be 
reliably observed and measured at this scale 
(cf. Bear, 1988; chapter 1) and thus could not 
provide any meaningful information.  

Note that during decades that was true in 
many situations. However, currently the 
numerical simulations coupled with laboratory 
measurements get back more and more to the 
pore-scale description which is a fundamental 
approach in hydrodynamics. (We’ll use 
hereafter a term “pore-scale” and not “micro-
scale” to distinguish between them as the 
notion “microscopic point” defined, for 
instance, by Bear, 1988, refers to a REV scale 
containing by definition numerous pores). This 
approach is often addressed or mentioned 
when there is a need to improve our 
understanding of transport phenomena in such 
settings. It may provide valuable information 
about some principle theoretical notions 
underlying conventional flow models. Besides, 
it can be used to obtain macro-scale 
constitutive equations, to provide single- and 
multiphase transport properties for large scale 
models, to predict how these properties may 
vary with rock type, wettability etc. 

The precise geometrical characterization of 
void space in natural materials becomes a key 
issue. Resulting from improved software and 
measurements technique, the recent advances 
in X-ray μCT allowed greater access to both 
higher resolution and volume of porous 
samples, and to a larger set of information 
useful in the porous media flow modeling. The 
range of energies used in the X-ray 
tomography allows a study of very dense 
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objects, such as rocks. The X-ray attenuation 
depends on the chemical composition of the 
material and its physical density. This μCT 
technique gives a unique opportunity for non-
destructive 3D core sample insight. An 
example of a porous cubic sample acquired via 
µCT is shown in figure 1. So the geometrical 
description of flow region via μCT imaging, 
the generation of a 3D grid in a real pore 
space, the discretized numerical model 
associated with this grid and the adequate flow 
computations, constitute the principal 
objective of our current work. For a 
computation of fluid distribution inside pores 
the models based on incompressible Navier-
Stokes equations and their extension to diffuse 
interface (Cahn and Hilliard, 1958) model are 
used. 
 

 
Figure 1. Example of a porous sample acquired via 
µCT and image processed, (500 slices stack, 
Bentheimer rock); L≈2.5mm. 
 
2. Micro-tomographic imaging of a real 

porous medium 

 
     Prior to extract, via a dedicated image 
processing software, necessary data and the 
geometrical description of the connected and 
unconnected porosities inside the sample, a 
tomographic acquisition of the later has to be 
carried out. We use a Skyscan 1172 µCT 
device to analyze our samples. As first step, 
the sample is fixed on a stepping motor 
motorized holder; the apparatus takes side 
view projections of the sample. At 0.3° angular 
step acquisition, more than 600 projections are 
required and recorded. As second step, the 
recorded projections are processed via a 
Feldkamp-like algorithm to reconstruct slice 
by slice a virtual sample. Each slice is a 2D 16 

bits TIFF grayscale picture. The slice pictures 
stack depicts the whole 3D sample. 
     After that the image processing on the slice 
stack is required. This step is very sensitive to 
setting parameters. We choose to study a well 
documented rock, the Bentheimer sandstone, 
in order to tune this image processing step on 
referenced values. 
     On the grayscale pictures stack image 
processing is made using Avizo software (Fire 
edition, VSG company). To measure the 
porosity from the processed picture slices, a 
Volume 3D Filter is applied on the stack. For 
Bentheimer sansdstone, the average porosity is 
0.21 ± 3% while a value of 0.207 ± 1.5% was 
calculated from our tests.    
 

3. Geometrical description and image based 

grid generation 
 
     To estimate numerically the sample 
transport properties, isolated pores (non-
connected to the main pore network) have to 
be deleted before meshing. Via an Individual 
Analysis measurement tool, the connectivity is 
investigated by labeling each pore, the pore 
volume and surface are also measured and only 
the main porosity is kept. A Not Filter is 
applied on the whole stack to code the binary 
pictures: porosities are now depicted as a bulk 
and can be meshed. For visualization, a surface 
generation tool could be applied on the stack.  
     The result is exported as a set of TIFF 
pictures in a dedicated software, ScanIP 
(SimpleWare company), for triangulation of 
pore space total surface. ScanIP provides a 
robust approach for the conversion of stack of 
binarized (or labeled) images into surface 
meshes. 
     To reduce the size of the grid (which could 
be memory and time consuming) we used 
Resampling and Cropping tools prior to the 
mesh generation. Note that Resampling does 
not modify an object size but reduced 
(sometimes, significantly) the total number of 
geometrical elements. This step may be 
somewhat critical because it may modify the 
connectivity, and hence the transport 
properties (for example, small throat between 
pores could be removed). The Cropping tool is 
used to reduce the model volume: a subregion 
of interest has to be chosen, which is inside the 
stack in size and location. This cutting process 
can isolate some pores from the main network 
(as the new boundaries have been generated). 
Therefore a Kill Border Filter has to be 
applied on the new volume in order to remove 



these unconnected porosities. Notice that the 
cropped “sample” is to be “representative” 
which may be a problem because of reduction 
in the sample size. 
     For each object the triangular mesh was 
generated first. Then the surface meshes were 
imported as geometry file into COMSOL 
Multiphysics 4.2 for direct numerical 
simulations of pore-scale single- and two-
phase (hereafter 1P and 2P, respectively) flow 
patterns. As a rule the volume (tetrahedral) 
grid was done using COMSOL and required 
rather fine discretization to get reliable results 
even for single-phase flow computations.   
 
4. Flow computations 

 

     The stationary (mainly, 1P) and transient 2P 
flow regime calculations were done making 
use of Navier-Stokes and Cahn-Hilliard pore-
scale models, respectively (Cahn and Hilliard, 
1958; see also Appendix below). The 
corresponding numerical problem formulations 
and general results are discussed below.  
     To optimize the computational expenses the 
initial sample (figure 2) has been cropped into 
8 regular cubs of equal volume. For each cube 
(or in other word, each 1/8th of sample; cf. 
figure 3) the porosity and the absolute 
permeability have been calculated. Their 
directional (i.e. x-, y- and z-direction) flow rate 
and total pore volume (porosity) variation for 
different 1/8ths turned out to be relatively small 
so that the original sample can be taken as 
uniform at the scale of few tens of pores.  
 

 
Figure 2. Original Bentheimer sandstone sample 
after reconstruction in ScanIP; L=2.45mm (cf. 
figure 1).  
 

 
   4.1. Grid generation 

 

     One of the most important components for 
successful numerical pore-scale model (both in 
1P and 2P cases) is an adequate choice of 
tetrahedral grid. By now all grids used in our 
work were generated in COMSOL with the use 
of local grid refinement towards grain surfaces 
(“Fluid Dynamics” built-in mesh generation 
option). Usually, the complicated geometry of 
pores and channels (figures 2 and/or 3) taken 
from reconstructed images without 
intermediate processing (smoothing), was 
prohibitive for generation of relatively coarse 
grid. In practice, a half of generated grids were 
done at “fine” or even “finer” level (in terms of 
COMSOL internal grid definitions). One of the 
most small grid examples shown in figure 3, 
contains approximately 2∙105 of grid elements, 
the worst element quality being of order of 0.1.  
 

 
Figure 3. One eighth of original Bentheimer 
sample: geometry and mesh; L1=L/2 (cf. figure 2). 
 
 
   4.2. Single-phase flow properties 

 
     The porosity and absolute permeability are 
addressed in this study. The dimensionless 
Navier-Stokes equations at Darcy limit (global 
Reynolds number meets Re << 1) describe 
laminar flow regime. It doesn’t mean however 
that no other information is available in a 1P 
flow simulation results. While the porosity 
computation is still straightforward and in 
principle is available in earlier stage of image 
processing, the absolute permeability (i.e. total 
flow through a sample) determination required 
more advanced procedure of flow simulation. 
It will generally depend on lateral boundary 



conditions (and so, on the sample shape) and 
pore-space topology. The roughness (or 
equally, smoothness) of grain surfaces which 
can hardly be measured at the moment, may be 
an important parameter together with 3D 
channels tortuosity. The latter can be modeled 
numerically (Fourie et al, 2007, cf. also figure 
4) and/or measured experimentally using any 
known procedure, for instance, based on 
tomographic reconstruction images.  
 

 
Figure 4. Streamlines of 1P stationary flow in 1/8th 
of original sample (figure 3); flow direction is from 
left to right. 
 
     Single-phase flow transport properties may 
be computed first from steady-state 3D flow 
problem solution and then compared to 
experimental data. To obtain numerical results 
the Incompressible Navier-Stokes application 
mode has been used for modeling. Special care 
has been taken to provide necessary mass 
balance in pore volume and laminar flow 
regime. Low enough Reynolds numbers can be 
controlled via imposed pressure drop between 
the inlet and outlet faces of a cubic sample. 
Note that even at these conditions the local 
velocity field is far from being smooth and 
regular (figure 5, shown in the figure are 
velocities in the range 2∙10-7÷6∙10-4 m/s). 
Different boundary conditions on lateral sides 
(no-slip, symmetric or periodic) for all flow 
directions have been examined and their 
impact on a medium permeability was 
observed and documented.  
 
   4.3. Two-phase flow regimes 

 
   Diffuse interface model (DIM) of two-phase 
pore-scale mass transfer has been developed 
for simulation of flow in real media. The 

model is based on Cahn-Hilliard equations 
(Cahn and Hilliard, 1958) and inherits the 
principal features of the previously reported 
one (Bogdanov et al, 2010). The model 
equations can be found in Appendix below. 
Note that viewed at micro-scale (=REV-scale), 
they comprise at least 2 parameters to specify a 
“space” of the flow regimes (Re is fixed!):  
 
Ca=μrur/σ , M=µr/µi ,                                 (1) 
 
where Ca and M stand for capillary number 
and viscosity ratio, subscripts “r” and “i” for 
recovered and injected fluids (typically, oil and 
water), respectively, other value definitions 
can be found in Appendix. Detailed analysis of 
equations (A8) shows that the Cahn number 
(normally, Cn >> 1) and the Peclet number (Pe 
>> 1) might contribute somewhat into flow 
pattern development. Here (cf. Appendix)  
 
Cn=L/ξ , Pe=urL/Mc                                 (2) 
 

 
Figure 5. Local interstitial velocity field for 1P 
stationary case: the same 1/8th of original sample 
like in figures 3, 4. 
 
     Recently 2D and 3D numerical analysis 
demonstrated quite different flow patterns, at 
least at viscous and capillary dominating 
regimes (cf. Bogdanov et al, 2010). In 
particular, the viscous fingering offset at 
unfavorable viscosity ratio M and typical 
surface tension σ is shown in figure 6. Recent 
example of stable 3D two-phase displacement 
without gravity in a real medium is illustrated 
in figure 7.  
     The locally dominating capillary forces at 
pore scale are responsible for mass exchange 
by capillary imbibition which is important 
mechanism in many practical applications. 
Modeling this process in its dynamics may 



provide better understanding of mass transfer 
in pores from both qualitative and quantitative 
viewpoints. The use of realistic geometry of 
pores becomes evidently one of the key factors 
for such a modeling.  
     It seems possible that nothing but complex 
interplay between pore geometry, fluids 
wetting and viscous properties, interfacial 
tension and hydraulic potential contributes 
equally to the validity of existing theoretical 
approach. Then any more or less important 
simplification may lead to a deviation from 
“equilibrium” and even to degenerate 
behavior. From this viewpoint the pore scale 
models can be ultimately useful because of 
explicit description of all important physical 
mechanisms.  
 

 
Figure 6. Offset of viscous fingering in artificial 
regular 2D porous medium at M=100 with capillary 
trapping behind leading front advancing to right 
side (cf. Bogdanov et al, 2010).   
 
 
5. Conclusions and future work 

 
 ○ Promising combination of 3D µCT 
reconstruction and imaging of the real porous 
medium (Bentheimer sandstone), the image 
processing and 3D geometry construction and 
finally, numerical mesh generation and 
simulations in COMSOL Multiphysics proved 
to result in a first 3D case study  
 ○    Both single- and two-phase flow in real 
pores has been simulated using incompressible 
Navier-Stokes and Cahn-Hillird diffuse 
interface models developed recently for 3D 
modeling of complex hydrodynamics 
 ○   Numerical evaluation of principal physical 
and geometrical characteristics and transport 
properties for single- and two-phase flow has 
been done for synthetic and real samples 
containing up to few hundreds pores  

 ○   The nearest future tasks embrace 
sensitivity studies for geometrical features and 
mesh parameters impact on computational 
results and further computations of two-phase 
hydromechanical phenomena under local 
capillary domination which is a natural 
condition for petroleum applications  
 

 
Figure 7. Two-phase flow in Bentheimer sandstone: 
displacement is stable as the injected (white) liquid 
is more viscous (M=0.1) than the displaced (black) 
one. Flow is directed from left to right. 
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8. Appendix. Phase field model for two-

phase flow  

 
Below is presented only the brief 

description of Cahn-Hilliard model. For more 
details of the theory and its formalism see 
Badalassi et al. (2003), Fichot et al. (2007). 
The second gradient theory assumes that free 
energy of a system is a functional of an order 
parameter φ, its gradient φ and the 
temperature T: 

 TFF ,,   .                                   (A1) 
In the case of an isothermal binary fluid, a free 
energy can be defined for flow configurations 
where the system is not in equilibrium as: 

   
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2
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                  (A2) 
where Ω is the region of space occupied by the 
system and φ is a dimensionless phase-field 
variable which serves to identify the two fluids 
with volume fraction (1+φ)/2 and (1−φ)/2. The 
chemical potential is defined as: 

 f  ,                                                 (A3) 
where α is the mixing energy density [N]. The 
fourth order partial differential equation 
describing the evolution of φ is the convective 
Cahn-Hilliard equation: 

    0)( 
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For g(φ) a following double potential form is 
chosen: 

g(φ)=(1/4ξ2)∙(φ2-1)2,                                (A5) 

where ξ is a capillary width, [m], that scales 
with the thickness of the diffuse interface. 
Finally, from (A3) it follows that the chemical 
potential can be written as:  

  



 222

2 1  ,                (A6) 

while for the nonlinear mobility M which is 
attractive and important for numerical 
applications, and contributes much to phase 

separation we choose the following expression 
(cf. Badalassi et al, 2003): 

M(φ) =Mc (1-γφ2)ξ2                                  (A7) 

where 0 ≤ γ ≤ 1. At γ→0 the phase separation 
dynamics is controlled by bulk diffusion; in 
the opposite case γ→1, the phase separation 
dynamics is controlled by interface diffusion. 
Combining (A4), (A6) and the modified 
Navier-Stokes equations for incompressible 
fluid, the system of model equations to be 
solved can be written as:  
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 +Eq.(A4)  +Eq.(A6)                                 (A8) 

The equilibrium profile is obtained by 
minimizing the free-energy functional, with 
respect to the variations of the function φ, i.e. 
simply solving for   

ν ≡ δF∕δφ =0, 
where F is given by (A2). In the case of one-
dimensional interface the solution is (cf. 
Fichot, 2007) 

 φ=±tanh[x/(√2ξ)].                                   (A9) 

The equation above is locally true for any 
particular geometry of the interface in 
equilibrium, so in all calculations presented in 
the paper the equation (A9) has been used to 
give initial phase field over model region. The 
surface tension is introduced through the 
integral of the free-energy density across the 
interface; it can be shown that it relates two 
above defined model parameters α and ξ via 
the following relation: 

σ=(2√2/3)∙(α/ξ).                                     (A10) 

It is practically convenient because easily 
available surface tension coefficient can 
substitute α in the model.   
     The dimensionless formulation defines as 
usual Reynolds number appeared in the first 
equation of (A8), but also Cahn number 
(Cn=L/ξ) in the last term of the equation. 
Beside that the product of the Peclet number 
(Pe=urL/Mc) and Cahn number, arises in the 
last term of the equation (A4), namely, Pe∙Cn3. 
These numbers may be important in definition 
typical flow regimes in a two-phase case.  
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