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Nematic Elastomers with Hybrid Alignement (HNEs)
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Figure: Mesoscopic chunk of NEs: disordered, isotropic phase (left); ordered,
nematic phase (right). NE molecules are caricatured grossly out of scale.

Figure: Schematic of hybrid orientation.
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Experimental facts 1: nematic-isotropic phase
transition
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Figure: Effects of temperature on a mesoscopic chunk of NEs.

The elastomeric distortions we deal with are uniaxial stretches
aligned with mesogen orientation N:

Uo = λ‖N + λ⊥ (I−N) .
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Experimental facts 2: rod-like specimen made of
hybrid NEs

Macromolecules, vol. 43, pp. 4362–4369 (2010).

solvent evaporation at low temperature induces a non-isotropic
de-swelling, which is accompanied by a large bending (right);
increasing the temperature, the macroscopic effects of the
nematic phase decrease and a flat state is recovered (center);
above the transition temperature the material is isotropic, and
bending is very high, but in the opposite direction (left).
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State diagram showing the phase transitions
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Figure: State diagram showing the phase transitions we consider. The goal is
to model deswelling from (c) to (d); then, the temperature-driven phase
transition nematic-isotropic, (d) to (b).
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Representing the distortions

The distortions Dn(v) and Ad(ϑ) are uniaxial stretches, sharing a
same representation formula; here, we shall denote with α(v) and
λ(ϑ) the swelling- and temperature-induced stretches, respectively:

Dn(v) = α‖(v)N + α⊥(v) (I−N) ,

Ad(ϑ) = λ‖(ϑ)N + λ⊥(ϑ) (I−N) ,
(1)

A distortion from point (c) to a generic state (ϑ, v) is described by the
map F̄o, which admits a straightforward representation

F̄o(ϑ, v) =
λ‖(ϑ)α‖(v)

λ‖(ϑn)
N +

λ⊥(ϑ)α⊥(v)

λ⊥(ϑn)
(I−N) . (2)
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The stretch measure

The distorted state is a ground state: you pay to stretch from F̄o

ψo , Soe =
∂ψo

∂FeF̄o

reference stress

S = TF∗ = So F̄
∗
o

ψ = Jo ψo , Se =
∂ψ

∂F

F

actual stress T = J−1 SFT

Fe = F F̄−1o

Figure: Stress measures and energy densities; J = det(F).
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The elastic energy

Let F denote a deformation with respect to the wet-nematic state
(point c), and let C = F>F be the associated strain; the elastic
deformation Fe and the elastic strain Ce are given by

Fe = F F̄−1o , Ce = (Fe)>Fe = F̄−>o CF̄−1o ; (3)

we consider a Neo-Hookean elastic energy density

φ = 1
2 µ (Ce · I− 3) = 1

2 µ (C ·C−1o − 3) ,

det(Co) = v2,
(4)

with µ the shear modulus; Co is the distortional strain induced by F̄o:

Co(ϑ, v) = F̄>o (ϑ, v) F̄o(ϑ, v) . (5)
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The flat state

If Co ∝ I, we have a homogenous state, that is, a flat configuration.
Moreover, the condition Co = F̄>o F̄o ∝ I is equivalent to

F̄o(ϑ, v) =
λ‖(ϑ)α‖(v)

λ‖(ϑn)
N +

λ⊥(ϑ)α⊥(v)

λ⊥(ϑn)
(I−N) =∝ I . (6)

It follows that ϑf satisfies

λ‖(ϑf )αd
‖

λ‖(ϑn)
=
λ⊥(ϑf )αd

⊥
λ⊥(ϑn)

. (7)

Actually, from experimental data [3], we know the deswelling
distortions at the completely dry state, and the expressions relating
the temperature to the cooling distortions,
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The model implementation

We implement the balance equations of non-linear elasticity in weak
form, using the volumetric-deviatoric decomposition of the
deformation measures, and adopting a mixed method. We have as
independent variables the displacement vector u, and the pressure p;
given F = I +∇u, we consider the following relaxed strain energy
density: φr = φs + φv, with

φs = 1
2 µ (Cs ·C−1o − 3) isochoric energy;

φv = k
2 (J − v)2 volumetric energy;

Cs = (v/J)2/3 C , unimodular part of C;

p = −k (J − v) , pressure;

J = det(F) , volume change;

(8)

and k the bulk modulus.
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The balance equations

Balance equations are implemented using a mixed L2-L1 method,
that is using second- and first-order Lagrangian shape functions for
the displacement and the pressure, respectively. The problem is then
stated follows: find a displacement u, and a pressure p such that, for
all test function ũ, and p̃ it holds:∫

B

(
− S · ∇ũ + f · ũ

)
= 0 ,∫

B

(
p

k
+ J − v) · p̃ = 0 ,

(9)

with u = 0 at x = −L/2. From our representation of the elastic
energy, it follows that the reference stress is a function of the
independent variables u and p, and of the state variables (ϑ, v):

S = S(u, p;ϑ, v) . (10)
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Nematic orientations

Figure: Whole specimen (top) and vertical cross section showing the nematic
orientation (bottom).
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Results 1

Figure: Results from numerical experiments. From top to bottom: dry state at
preparation temperature ϑn; nearly flat state at ϑ ∼ ϑf ; isotropic state at
ϑ = 1. Wireframe renders the preparation state; five cross sections highlight
bending.
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Results 2
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Figure: Curvature versus temperature. The plot shows the results from
numerical (solid line) and actual (dotted line with marker) experiments for two
similar specimens having different thickness and length (H = 108 ∼ 46µm).

A. De Simone, L. Teresi Thermally-induced Bending in HNEs


	undefined: 
	undefined_2: 
	undefined_3: 
	undefined_4: 
	group_1: Off
	Figure Schematic of hybrid orientation: 
	undefined_6: 
	02 04 06 08 10 12 14: 
	undefined_7: 
	undefined_8: 
	undefined_9: 
	undefined_10: 
	c: 
	a: 
	d: 
	undefined_11: 
	undefined_12: 
	undefined_13: 
	undefined_14: 
	undefined_15: 
	undefined_16: 
	undefined_17: 
	undefined_18: 
	undefined_19: 
	undefined_20: 
	undefined_21: 
	undefined_22: 
	undefined_23: 
	undefined_24: 
	undefined_25: 
	undefined_26: 
	undefined_27: 
	undefined_28: 
	comb_1: 
	undefined_29: 
	undefined_30: 
	undefined_31: 
	undefined_32: 
	undefined_33: 
	undefined_34: 
	Button13: 


