Presented at the 2011 COMSOL Conference in Boston

Reconstruction for Interstitial Diffuse Optical Tomography (iDOT) for Human Prostate

Xing Liang and Timothy C. Zhu

Department of Radiation Oncology, University of Pennsylvania 10/13/2011

# Outline

- Introduction to iDOT
- Why do we use it
- Experimental
- iDOT algorithm
- Results
- Summary and future directions

## Introduction to iDOT

- DOT is used to obtain spatial distribution of optical properties in biological samples
- Usually light sources and detectors are placed on the surface of the samples, for instance, in optical brain imaging
- Interstitial DOT is used to predict the prostate optical properties, and the light sources and detectors are placed interstitially inside the prostate





# Why do we use iDOT

- iDOT is used for prostate photodynamic therapy (PDT); During PDT treatment, linear sources are used to deliver light dose to prostate
- In prostate PDT,
  optical \_\_\_\_\_\_ light \_\_\_\_\_ treatment efficacy
- Therefore, the goal of this study is to measure optical properties interstitially, and directly by the treatment linear sources to minimize the treatment time



PDT dosimetry quantities  $[^{1}O_{2}]_{rx}$  for treatment of 300 s in a homogeneous prostate

## Experimental

- A prostate phantom experiment was conducted mimicking prostate measurement
- 12 linear sources and 5 detector channels were used
- 3 anomalies were embedded in the phantom with different optical properties





### Experimental









6



### **Experimental**



### iDOT algorithm

1. Obtain prostate contour from Ultrasound

2. Input contour, source and detector locations into COMSOL to generate mesh for finite element calculation (FEM) for in 3D

3. Read iDOT measured fluence rate data  $(\phi_m)$ 

4. Calculate forward fluence rate data ( $\phi_c$  using steady state diffusion Eq with FEM a initial  $\mu_a$  and  $\mu_s$ '.

5. Build Jacobian matrix (J) in CW scheme

6. Calculate projection error between  $\phi_c$  an and  $\phi_m$ . Less than tolerance?

7. Stop

No

7. update  $\mu_a$  and D



 $^{\mu}a$ 



# iDOT algorithm

- The mesh is created by COMSOL
- 22830 nodes and 137539 elements
- A r=3 cm cylinder is used to mimic surrounding tissue for prostate
- The optical properties of the background are  $\mu_a = 0.3$ (cm<sup>-1</sup>) and  $\mu_s' = 15$  (cm<sup>-1</sup>) for the prostate and the surrounding medium



### **Results – ontical properties** $\mu_{s}'$ $\mu_{s}'$ $\mu_{a}$ $\mu_{a}$

 $\mu_{s}'$  $\mu_{s}'$  $\mu_{a}$ z = 2.5

z = 3

0.5 1 1.5  $^{0.1}$  z = 3.5  $^{0}$ 0.05 0 0 0.1

0.5  $\mu_{s}'$  $\mu_{s}'$  $\mu_{a}$ 

1.5

1



### Results – light profile



### **Results – absorption coefficient**



### **Results – scattering coefficient**



### Summary

 Established iDOT method to determine optical properties in prostate PDT

- Reconstructed optical properties using iDOT method
- Compared iDOT reconstruction results with experimental data

### **Future questions**



E8



for initial condition

6

### **Future directions**

 Reconstruct single data pairs for iDOT, and use the reconstructed optical properties as initial condition

• Reduce cross talking between  $\mu_a$  and  $\mu_s'$  to improve the accuracy of the algorithm

Thank you!