Simulation of Nuclear Radiation Based Energy Harvesting Device using Piezoelectric Transducer

Goudara Ravi Prakash, K. M. Vinayaka Swamy, B. G. Sheeparamatti

Department of Electronics and Communication Engineering Basaveshwara Engineering College, Bagalkot.

INTRODUCTION

• Limited lifetime

- Rechargeable/replacement/disposal
- Cost

Renewable Energy Harvesters

- Unlimited lifetime
- Maintenance free operation
- Eco friendly
- Low output power

Energy Extraction Methods

Conversion techniques

- Electrostatic (capacitive).
- Piezo electric.
- Electromagnetic (inductive).
- Thermal.
- Piezo resistivity.

β Particles Energy Conversion

Fig 1. Beta particles (high-energy electrons) fly spontaneously from the radioactive source and hit the copper sheet, where they accumulate.

Fig 2. Electrostatic attraction between the copper sheet and the radioactive source bends the silicon cantilever and the piezoelectric plate on top of it.

Fig 3. When the cantilever bends to the point where the copper sheet touches the radioactive source, the electrons flow back to it, and the attractive force ceases

Fig 4. The cantilever then oscillates, and the mechanical stress in the piezoelectric plate creates an imbalance in its charge distribution, resulting in an electric current

Use of COMSOL Multyphysics

Application modes:

Piezoelectric: mechanical / electrical behavior

- generated charge / electrical potential
- vertical vibrations application

Electrostatic: electrostatic force /electric field behavior

GEOMETRY

3D cantilever

- $\text{length } L = 500 \mu \text{m};$
- width $w = 100 \mu m$;
- copper thickness $t_{copper} = 2 \ \mu m$;
- piezoelectric layer thickness $t_{ZnO} = 2 \ \mu m$.
- -air layer thickness $t_{air}=2 \mu m$.

Radioactive source:

- $\text{length } L = 200 \mu \text{m}$
- width $w = 100 \ \mu m$
- thickness $t_{source} = 2 \ \mu m$

Meshing

Mapped mesh:

-finer mesh :piezo ,cantilever ,radioactive source layer Mesh remaining free :air layer

Governing Equations

Piezoelectric layer

- strain-charge form

$$S = s^E T + dE$$

 $D = \varepsilon^T E + dT$

S = mechanical strain T = mechanical stress [N/m²] s^E = elastic compliance [Pa⁻¹] d = piezoelectric coefficient [C/N] D = electric displacement [C/m²] E = electric field [V/m] $\varepsilon^{T} = dielectric permittivity [F/m]$

radio active source

- electrostatic potential

$$V = \frac{q}{4\pi r\varepsilon}$$

 $\rho = 5680 Kg / m^3$

Subdomain and Boundary settings

Mechanical boundary conditions

- fixed end

Electric boundary conditions(piezo solid)

- bottom surface: grounded
- upper surface: floating potential
- other surfaces: zero charge

Electrostatic boundary conditions

- bottom surface of copper cantilever : grounded
- upper surface of radio active source: electric potential
- other surfaces: zero charge

Solver Parameters

group 1: stationary solver

group 2:Parametric solver:

voltage v_in:1v \rightarrow 15v

Analysis types	General Parametric Stationary Adaptive Optimizate	on/Sensitivity Advan
Piezo Solid (smpz3d) Static	Parameters Parameter names: v_in	
	Parameter values: range(1,1,15)	Edit
] Auto select solver	Load Parameter V	/alues From File
ver:	Linear system solver	
ationary	Linear system solver: Direct (UMFPACK)	*
ne dependent genvalue	Prechnidil Imer	
ationary segregated rametric segregated ne dependent segregated	Matrix symmetry: Automatic	Settings
Adaptive mesh refinement Optimization/Sensitivity Plot while solving		
Plot Settings		

Simulation Results Z-Displacement

Voltage developed

Voltage developed

Figure : plot of electric potential developed versus length of piezo layer.

SL.	Length	Voltage	deflection
no	(µm)	(V)	(µm)
1.	500	0.0956	2.001
2.	450	0.0963	2.011
3.	400	0.0935	2.036
4.	350	0.0916	2.149
5.	300	0.0783	2.477
6.	250	0.0679	3.092
7.	200	0.0627	4.214
8.	150	0.0506	6.125
9.	100	0.0132	8.539
10.	50	0.0654	12.05

Table 1: Voltage developed across piezoelectric material and deflection observed at the tip (for a fixed length of micro cantilever and varying piezo length)

Plot of Applied voltage vs z-displacement

Conclusion

- An energy harvester based on piezoelectric self-reciprocating radioisotope powered cantilever was designed and simulated in Comsol MultiPhysics.
- This model can be used for future optimization of the generator design.
- Generated voltage can be increased by Geometry Optimization techniques using moving mesh application mode

References

1. Hui Li, Amit Lal, James Blanchard, Douglass Henderson, "Self reciprocating radioisotope powered cantilever", journal of applied physis, volume 92, and no.2, 15 July 2002, pp-1122-1127.

2. Amit Lal & James Blanchard, "The Daintiest Dynamos", IEEE Spectrum, sept.2004, pp-38-41.

3. Brian.D. Hahn. Daniel T.Valentine "essential Matlab for engineers and scientists", pp-309-311.

4. Suyog N Jagtap and Roy Paily, "Geometry Optimization of a MEMS-based Energy Harvesting Device" Proceeding of the 2011 IEEE Students' Technology Symposium 14-16 January, 2011, IIT Kharagpur.

5. M. Guizzetti, V. Ferrari, D. Marioli and T. Zawada, "Thickness optimization of a piezoelectric converter for energy harvesting," *Proceedings of the COMSOL Conference*, 2009

6. W. Liao and T.H.NG, "Sensitivity analysis and energy harvesting for a self powered piezoelectric sensor," *Smart Structures Laboratory University of Hong Kong*, vol. 16.

7. Rajesh Duggirala, Ronald G. Polcawich, *Member, IEEE*, Madan Dubey, and Amit Lal, *Member, IEEE* "Radioisotope Thin-Film Fueled Microfabricated Reciprocating Electromechanical Power Generator" Journal of micromechanical systems, VOL. 17, NO. 4, AUGUST 2008

Thank you.