
INTRODUCTION: TAP micro-reactors reduce the complexity
of industrial operating environments to characterize the
catalyst’s design. [1] However, the distribution of micron-
sized catalyst particles plays a major role in extracting their
distinctive reactivity palette and design optimization. [2-4]

RESULTS: Simulations were conducted at 500 K and
results were in agreement with the stochastic model.

CONCLUSIONS: 
 Two-Particle system shows most prominent

shadowing in the axial direction with a shift towards
the inlet of the reactor when decreasing their size.

 An optimal dilution of a thin-zone can be found at
which performance outweighs shadowing.

 Capture zones extend the distance at which a
shadowing effect sets in.

 Overlap of capture zones stabilizes the conversion,
therefore leading to high amounts of shadowing.

A shadowing effect could be simulated for highly active
particles on a multi-scale. A further step is to extend
the models for non-homogeneous catalysts and fine-
tune the mode of activity distribution within a catalyst
particle with experimental validation.
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Figure 3. Dilutions of a centered reactive pellet bed of 2 mm long with
highly reactive non-porous pellets (𝜀𝑝𝑒 = 0,𝐷𝑝𝑒,𝑖 = 0).
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Reaction-Diffusion model (> ø 50 µm) 
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Diluted thin-zone (ø 50 – 0.1 µm) 

1-D model with a reactive pellet bed:
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A homogenization approach: 
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Supported nanoclusters (ø 100 – 1 nm) 

Inert support (2-D):

TAP reactor:

𝐴 + Zcl ⇒ B

𝐴 + Zcz ⇒ B

Steady-state study in 2- or 3-D            Mesh refinement study required  

Deterministic model Stochastic model

Software: COMSOL Multiphysics 5.5

Solution method: Monte Carlo (MC) 

In-house software: C++ → Python

Solution method: Finite elements

COMPUTATIONAL METHODS:

Figure 2. Shadowing of a highly active two-particle system with equal
diameter in the axial direction of the TAP reactor.

Figure 1. The TAP reactor system: a transient pulse response technique. 

Figure 4. Centered particle (250 µm) deposited with nanoclusters of ø 10
nm at an inert support. Marked red zone = overlap of capture zones.
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