Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Helium Two-Phase Flow in a Thermosiphon Open Loop

B. Baudouy[1] and F. Visentin[1]
[1]CEA, Irfu, SACM, Gif-sur-Yvette, France

The construction of high magnetic field superconducting coils requires the use of low temperature superconductors that must be cooled down to liquid helium temperature (4.2 K). Natural two-phase convection loops, i.e. thermosiphon loop, are used as cooling system for large superconducting magnets mainly because of its passive nature. The study present a thermohydraulics model realized with COMSOL ...

Relevance of Hydro-Mechanical-Chemical Processes Involved in the Construction and Operation of Copper Heap Leach Pads

M. Tincopa[1], A. Nardi[2], G. Roman-Ross[2] , J. Molinero[2]
[1]Technic University of Catalonia (UPC), Barcelona, Spain
[2]Amphos 21 Consulting, Barcelona, Spain

Heap leaching in the mining industry had become a sophisticated practice at least 500 years ago. It is a mineral processing technology whereby piles of crushed Run-of–Mine rock are leached with chemical solutions to extract minerals. The goal of this work is to contribute to the understanding of the behavior of a heap leach pad by using coupled Hydro-Mechanical-Chemical simulations. COMSOL ...

Annealing Furnaces Modelisation for Photovoltaïc Applications

J. Givernaud[1]
[1]EMIX, St Maurice La Souterraine, France

The optimisation of dimensions, materials choice of heaters in annealing furnaces are done with COMSOL Multiphysics® in 2D-axisymetry. Heat losses sources are identified and corrective actions can be taken in function of simulation results. A power saving of more than 50% is achieved thanks to simulations.

Deformation Behavior Of A Liquid Droplet Impacting A Solid Surface

S. Oukach[1], M. Elganaoui[1], B. Pateyron[1], and H. Hamdi[2]
[1]Laboratoire des Sciences des Procèdes Céramiques et de Traitements de Surface SPCTS, Limoges, France
[2]Laboratoire de Mécanique des Fluides et Energétique LMFE, Marrakech, Morocco

The quality of coatings obtained by means of thermal spraying depends strongly on the mechanism of the interaction between the molten droplets and the surface to be covered. The aim of the present study is to simulate the impact of a droplet onto a substrate, in order to have a good understanding of the dynamics of droplets impact. In this study, the process of droplet spreading is described; the ...

Multiphysics Modeling of a Gas Bubble Expansion

B. Chinè [1], and M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy and Instituto Tecnologico de Costa Rica, Cartago, Costa Rica
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Modeling and simulation softwares are very useful tools when we have to analyse and understand the different phenomena occurring during metal foams processing, because several simultaneous physical mechanisms have to be accounted for. In this work we use Comsol Multiphysics 4.2 to model a spherical hydrogen gas bubble expanding in aluminium liquid, initially at rest. The aim of the present ...

Using a Level-Set Model to Estimate Dwell Time in a Vacuum Dewatering Process for Paper

K. Rezk[1]
[1]Department of Energy, Environmental and Building Technology, Karlstad University, Kronoparken, Sweden

Water removal during paper manufacturing is an intensive energy process. The dewatering process generally consists of four stages in which the first three stages, water is removed mechanically through vacuum pulses and pressing.The fourth stage involve thermal drying. The vacuum dewatering process has been considered in this work. A laminar level-set method has been applied in order to capture ...

An Innovative Reactive Transport Modeling Approach for the Chemical Evolution of a HLW Cell in the Callovo-Oxfordian Formation

J. Molinero[1], D. García[1], M. Grivé[1], A. Nardi[1]
[1]Amphos 21 Consulting, Barcelona, Spain

Andra (The French National Radioactive Waste Management Agency) envisages the safe disposal of High-Level Waste (HLW) and Intermediate-Level Long-Lived Waste (IL-LLW) in deep geological storage using a multi-barrier system. To ensure the containment of radioactivity, the principle of storage is based on a clay formation with low permeability, homogeneity and continuity (i.e Callovo-Oxfordian ...

Numerical Analysis of Conjugate Heat Transfer in Foams

N. Bianco[1], R. Capuano[1], W.K.S. Chiu[2], S. Cunsolo[1], V. Naso[1], M. Oliviero[1]
[1]DETEC, Università degli Studi Federico II, Napoli, Italy
[2]Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA

A conjugate conductive-convective-radiative discrete model useful for the study and the simulation of heat transfer in a ceramic or metallic foam is presented. A Generation-based Technique is used for the foam representation, using the Weaire-Phelan structure and heat transfer is studied using the COMSOL Multiphysics. The computational domain is made up by a single cell and a fictitious inlet ...

Assessment of Anterior Spinal Artery Blood Flow following Spinal Cord Injury

M. Alshareef[1], A. Alshareef[2], V. Krishna[3], M. Kindy[3], T. Shazly[4]
[1]College of Medicine, Medical University of South Carolina, Charleston, SC, USA
[2]Department of Biomedical Engineering, Duke University, Durham, NC, USA
[3]Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

The incidence of spinal cord injury (SCI) in the US is approximately 12,000 individuals annually, due to various forms of trauma and disease. Diminished flow over a prolonged period of time can cause permanent spinal damage. We constructed a 3D finite element model of the spinal cord to examine the role of compressive loading on spinal blood flow. It was found that the type of forces on the ...

Numerical Simulation of an Induction Stirred Ladle

M. Pal1, S. Kholmatov2 and P. Jönsson2
1Centre-University of Wales, Swansea
2Royal Institute of Technology, Stockholm, Sweden

In this paper a simulation model of a laboratory scaled induction ladle is presented. The simulation model so developed will make it feasible to receive information about the fluid flow phenomenon and thermal heat transfer. In order to perform the numerical simulation of the furnace, physical processes involved are expressed as a coupled-nonlinear system of partial differential equations ...

Quick Search