技術情報とプレゼンテーション

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computer Modelling of Deformable non-Newtonian Flow using COMSOL Multiphysics

H.A. Lecuyer[1], F.H. Bertrand[1], P.A. Tanguy[1], J.P. Mmbaga[2], and R.E. Hayes[2]
[1] Ecole Polytechnique , Montreal
[2] University of Alberta, Edmonton

This presentation is concerned with the modelling of deformable non-Newtonian Flow using COMSOL Multiphysics. This general modelling approach has more concrete applications such as paper coating in a metering size press, meniscus location by PIDS to mention a few.

Simulation of Incompressible Flow through Rhombohedric Pores

R. Viola[1][3], F. Zama[2], M.Tuller[3], and E. Mesini[1]

[1]DICMA, University of Bologna, Bologna, Italy
[2]Dep. of Mathematics, University of Bologna, Bologna, Italy
[3]Dep. of Soil, Water, and Environmental Science, University of Arizona, Arizona, USA

Advances in visualization and discretization of pore structures by means of Computed Tomography, and rapidly increasing computational capabilities, allow numerical modeling of pore-scale fluid flow based on the incompressible Navier-Stokes equations rather than using a macroscopic approach based on Darcy’s law. To test the capabilities of the COMSOL Multiphysics modeling platform, we ...

Inlay Fixed Partial Denture Framework 3-D Structural Integrity Validation Using COMSOL Multiphysics®

T.M.R. Alho[1]

[1]Department of Electrical Engineering and Automation, University of Vaasa, Vaasa, Finland

Manual manufacturing of inlay fixed partial denture frameworks by metal casting can take hours of dental practitioners work time. This paper introduces 3-D simulations of premanufactured inlay fixed partial denture framework assembled from laser cut sheet metal parts. The study gives a good estimation of how well the frameworks can withstand strong human occlusion forces and masticatory cycle. ...

Numerical Validation of the Efficiency of Dual-Frequency Radiofrequency Ablation

A. Candeo[1] and F. Dughiero[1]
[1]Department Electrical Engineering, University of Padova, Padova, Italy

Radiofrequency Ablation (RFA) represents a valid alternative for treating liver metastases in medically complicated patients. Conventional devices currently operate at 500 kHz, due to good conducting properties of tissues. However, the use of lower frequencies (i.e. 20 kHz) has been recently reported to enhance the treatment effectiveness, due to a more pronounced difference in electrical ...

Analysis of Electrical Phenomena Occurring in Thermally Assisted Mechanical Dewatering Processes

A. Mahmoud, A. Fernandez, and P. Arlabosse
Ecole des Mines d’Albi Carmaux, Albi

The so-called opposite electrode pair measurement strategy is adapted in a filtration/expression cell filled with a model material packed bed. In this paper, we investigate the electrical properties of a packed bed, with particular emphasis on its overall conductivity. As a special case study we treat potassium chloride solutions, using model materials of different particle sizes.

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

Designing B-field Coils from the Inside-Out

C.B. Crawford[1], Y. Shin[1], and G. Porter[1]
[1]Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, USA

Traditionally the design cycle for magnetic fields involves guessing at a reasonable conductor / magnetic material configuration, using FEA software to calculate the resulting field, modifying the configuration, and iterating to produce the desired field. Our method involved solving the classical Laplace equation on regions with imposed boundary conditions, which was implemented straightforwardly ...

Finite Element Analysis of Microscale Luminescent Glucose Sensors in the Skin Dermis

S. Ali[1], and M. McShane[1]
[1]Department of Biomedical Engineering, Texas A&M University-College Station, Texas, USA

With the rising predominance of diabetes, successful management of blood glucose levels is increasingly important. Key efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with polyelectrolyte multilayer nanofilms. A two-substrate mathematical model of microscale optical glucose sensors in ...

Visions Realized: Using COMSOL Multiphysics to Prepare Students for the Modern World

Bruce A. Finlayson
University of Washington
Washington, USA

This talk demonstrates the success in teaching chemical engineering undergraduates to use COMSOL Multiphysics (FEMLAB) to solve realistic problems in a project format. Undergraduates have been creative and solved problems much more difficult than those in their textbooks, thus gaining a deeper understanding of transport processes. Illustrations are also given how they check to see they’ve ...

Quick Search

3171 - 3180 of 3644 First | < Previous | Next > | Last