研究開発におけるマルチフィジックスシミュレーションの具体例

さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.


COMSOL コンファレンス 2020 論文集を見る

RF and Microwave Engineeringx

Radio Frequency Tissue Ablation Simulation with COMSOL Multiphysics® Software

N. Elabbasi [1], M. Hancock [1],
[1] Veryst Engineering, Needham, MA, USA

Radiofrequency (RF) tissue ablation is commonly used to treat medical conditions involving dysfunctional tissue especially in the heart, kidneys, lungs, bones, or liver. An electrode at the tip of a catheter delivers high frequency current (350-500 kHz) to the targeted tissue causing it ... 詳細を見る

Analysis of a Prototype MRI Hybrid Birdcage RF Coil with Uncertainty Quantification (*)

J. T. Fong [1],
[1] National Institute of Standards & Technology, Gaithersbug, MD, USA

INTRODUCTION. In a magnetic resonance imaging (MRI) system (see Fig. 1), it is necessary to excite the nuclei of a patient into coherent precession for imaging. This requires coupling between the nuclei and a source of radio frequency (RF) power (the transmitter). To receive a ... 詳細を見る

Electromagnetic Modeling of a Millimeter-Wavelength Resonant Cavity

J. C. Weatherall [1], J. Barber [1], B. T. Smith [2], J. Greca [1],
[1] Battelle Memorial Institute, Norwell, MA, USA
[2] U.S. Department of Homeland Security, Science and Technology Directorate, Washington, DC, USA

The measurement of dielectric constant at frequencies of 20 GHz or greater is important for specifying the optical properties of materials at millimeter wavelength. One method of measurement uses a resonant cavity containing a sample of the material, and relates the resonant frequency ... 詳細を見る

Multiphysics Analysis of RF Cavities for Particle Accelerators: Perspective and Overview

M. Awida [1],
[1] Fermi National Particle Accelerator Laboratory, Warrenville, IL, USA

Particle accelerator technology evolves gradually towards improving reliability and efficiency of the accelerator machines, which would reduce their cost for current applications and even make them more accessible to new industrial applications. RF cavities are utilized in particle ... 詳細を見る

Genetic Algorithm for Geometry Optimization of Optical Antennas

R. Diaz de Leon [1], G. Gonzalez [1], A. G. Rodriguez [1], E. Flores [2], F. J. Gonzalez [1],
[1] Universidad Autonoma de SLP, San Luis Potosi, S.L.P., Mexico
[2] Instituto Tecnologico de SLP, San Luis Potosi, S.L.P., Mexico

A genetic algorithm was programmed in MATLAB® software and linked to the COMSOL Multiphysics® software with the COMSOL LiveLink™ for MATLAB® to optimize the geometry of an optical antenna (nanoantenna). The proposed computational model demonstrated that nanoantenna geometries does not ... 詳細を見る

Multiphysics Analysis of a 130 GHz Klystron

A. Leggieri [1], D. Passi [1], R. Citroni [1], G. Saggio [1], F. Di Paolo [1]
[1] Dept. of Electronic Engineering, University of Rome “Tor Vergata”, Italy

The multiphysics analysis of a 130 GHz klystron is described in this paper. Critical quantities are exposed to multiple physics effects acting on narrow dimensions modified by power dissipations. The proposed device uses an integrated injection/bunching section described in last COMSOL ... 詳細を見る

Modeling Ex Vivo Microwave Hyperthermia of Different Biological Tissues

H. Kokabi [1], G. Chen [1], N.-E. Belhadj-Tahar [1],
[1] Université Pierre et Marie Curie, Paris, France

Electromagnetic and thermal simulations are achieved using COMSOL Multiphysics® with 2D axisymmetrical finite–element method for a percutaneous microwave hyperthermia system with ex–vivo experiments on different biological tissues. Temperature variation and distribution are studied in ... 詳細を見る

Modeling Orbital Angular Momentum (OAM) Transmission in Waveguides with the COMSOL Multiphysics® Software

A. Cagliero [1], R. Gaffoglio [1], A. De Vita [2], B. Sacco [2],
[1] Department of Physics, University of Torino, Torino, Italy
[2] Centre for Research and Technological Innovation, RAI Radiotelevisione Italiana, Torino, Italy

The recent years have witnessed a growing interest in the possibility of enhancing the information transfer per unit bandwidth by exploiting the Orbital Angular Momentum (OAM) of light in both free-space and guided scenarios. In the proposed paper, the propagation of suitable OAM ... 詳細を見る

Multiphysics Modelling of a Microwave Furnace for Efficient Solar Silicon Production

N. Rezaii [1], J. P. Mai [1],
[1] JPM Silicon GmbH, Braunschweig, Germany

The JPM Silicon GmbH presents a novel method for the production of solar grade silicon in the microwave oven. This method can specially reduce the energy costs and increase the efficiency of the process. A numerical model is developed which depicts the physical, chemical and ... 詳細を見る

Full Simulative Approach to Orbital Angular Momentum (OAM) Transmissions between Antenna Arrays

R. Gaffoglio [1], A. Cagliero [1], A. De Vita [2], B. Sacco [2],
[1] Department of Physics, University of Torino, Torino, Italy
[2] Centre for Research and Technological Innovation, RAI Radiotelevisione Italiana, Torino, Italy

The possibility of exploiting the Orbital Angular Momentum (OAM) of light as a means to simultaneously transmit radio signals at the same frequency led us to the experimental implementation of an OAM-based multiplexing scheme between antenna arrays. Within this framework, the realization ... 詳細を見る