研究開発におけるマルチフィジックスシミュレーションの具体例

さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.


COMSOL コンファレンス 2020 論文集を見る

Structural Mechanics and Thermal Stressesx

Implementation of Immersed Finite Element Method for Fluid-Structure Interaction Applications

N. Nama [1], T. J. Huang [1], F. Costanzo [1],
[1] Department of Engineering Science and Mechanics, Pennsylvania State University, PA, USA

Fluid-structure interaction (FSI) refers to a class of problems in which the motions of fluid and solid are coupled. FSI is of great significance in many applications such as aero-elasticity, biomechanics, and design of various engineering systems. Typically, the multiphysics involved in ... 詳細を見る

Thermo-mechanical Modeling of Pu-238 Production Target at HFIR

C.J. Hurt [1], J.D. Freels [2],
[1] University of Tennessee, Knoxville, TN, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

The production model in the COMSOL Multiphysics® software makes use of the most up-to-date PIE data, material property inputs, and modeling methodology. The fully coupled thermo-mechanical equations are solved over the entire domain, significantly increasing the degrees of freedom ... 詳細を見る

Finite Element Modeling of MEMS Chevron Thermal Actuators for Strain Engineering of Graphene

M. Vutukuru [1], J. Christopher [2], B. Goldberg [1,2], D. Bishop [1,2,3], A. Swan [1,2,3]
[1] Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
[2] Department of Physics, Boston University, Boston, MA, USA
[3] Division of Material Science Engineering, Boston University, Boston, MA, USA

Graphene, a single layer of carbon atoms, has demonstrated extremely high electric and thermal conductivities, tensile strength, and is therefore an exciting novel building block in the world of 2D flexible electronics. We propose the integration of graphene with MEMS devices to ... 詳細を見る

A COMSOL Multiphysics® Software Analysis of Beam Tube Cooling in the High Flux Isotope Reactor of ORNL

J. D. Freels [1],
[1] Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Previous to the present work, a formal calculation was approved [1,2] to support the operation of the High Flux Isotope Reactor (HFIR) Horizontal Beam-Tube 1 of 4 (HB-1). The present calculation [3,4] repeats the previous work using COMSOL Multiphysics® software and extends the analysis ... 詳細を見る

Thermomechanical Design of a Gas Turbine Reheat Combustor Experiment Using FEM Analysis with the COMSOL Multiphysics® Software

F. M. Berger [1], M. Eser [1], T. Sattelmayer [1],
[1] Lehrstuhl für Thermodynamik, Technical University of Munich, Munich, Germany

Enhanced operational flexibility and low levels of pollutant emissions are achieved with a sequential arrangement of premixed combustion stages in gas turbines for power generation. In the second – reheat – combustion stage, hot flue gases of approximately 1500K are enriched with fuel ... 詳細を見る

Finite Element-Based Characterization of Viscoelastic Materials

X. Song [1], S. Dircks [1], D. Mirosnikov [1], B. Lassen [2],
[1] Mads Clausen Institute, SDU, Sønderborg, Denmark
[2] DONG Energy, Fredericia, Denmark

The objective of this study is to acquire a full characterization of a hyper-elastic material. The process is realized by performing a Dynamic Mechanical Analysis (DMA) with a viscoelastic material, which is extended by image processing algorithms in order to measure the changing ... 詳細を見る

Developing Solutions to Tonal Noise from Wind Turbines Using COMSOL Multiphysics® Software

J. M. Stauber [1], B. A. Marmo [1],
[1] Xi Engineering Ltd, Edinburgh, United Kingdom

Tonal noise from wind turbines can have effects on neighboring residences and its emission can result in strong regulatory penalties that can include the closure of wind farms. The authors present a model of a new broadband damping approach where containers filled with EniDamp™, an ... 詳細を見る

Numerical Analysis and Experimental Verification of a Fire Resistant Overpack for Nuclear Waste

P. Geraldini [1], A. Lorenzo [1],
[1] Sogin S. p. A., Rome, Italy

Confinement systems for nuclear waste are usually designed to perform and ensure safety in view of all the assumed design basis events, including fires. Considering waste typology and radioactivity, the goal of the confinement system design is to protect the content of the steel drums ... 詳細を見る

Simulation of Thermomechanical Couplings of Viscoelastic Materials

F. Neff [1], T. Miquel [2], M. Johlitz [1],
[1] Universität der Bundeswehr München, Munich, Germany
[2] École polytechnique, Palaiseau, France

Using COMSOL Multiphysics® software, a new model was implemented with the Physics Builder functionality, which provides a thermomechanical coupling. It consists of two independent physics interfaces, one for the mechanical, viscoelastic behavior and one for the heat transfer. With the ... 詳細を見る

Multiphysics Analysis of a 130 GHz Klystron

A. Leggieri [1], D. Passi [1], R. Citroni [1], G. Saggio [1], F. Di Paolo [1]
[1] Dept. of Electronic Engineering, University of Rome “Tor Vergata”, Italy

The multiphysics analysis of a 130 GHz klystron is described in this paper. Critical quantities are exposed to multiple physics effects acting on narrow dimensions modified by power dissipations. The proposed device uses an integrated injection/bunching section described in last COMSOL ... 詳細を見る