技術情報とプレゼンテーション

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...

Coupling Miscible Flow and Geochemistry for Carbon Dioxide Flooding into North Sea Chalk Reservoir

B. Niu[1], W. Yan[1], A.A. Shapiro[1], and E.H. Stenby[1]

[1]Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

As an effective method to cope with green-house gas emission, and to enhance oil recovery, injection of carbon dioxide into oil reservoirs has obtained increasing attentions. The flooding process involves complex phase behavior among oil, brine and CO2, and geochemical reaction between CO2 and rock. COMSOL Multiphysics® was first applied to simulating two flooding processes with known ...

Creating Business Opportunities using Mathematical Modeling

E. M. Fontes
Catella Generics AB

Computational mathematical modeling has allowed scientists and engineers to perform better, faster, and more economical virtual experiments. Through mathematical modeling, an application expert can simulate performance characteristics during different operating conditions and thereby accelerate the pace of understanding new electrochemical system in relation to specific application ...

Analysis of TAP Reactors Procedures Using COMSOL

S. Pietrzyk[1], and G.S. Yablonsky[2]
[1]Unité de Catalyse et Chimie du Solide, Université des Sciences et Technologies de Lille, France
[2]Parks College, Saint Louis University, St. Louis, MO, USA

TAP (Temporary Analysis of Products) reactors are powerful instruments to study the kinetics of catalytic reactions. Their basic principle, exposition of evacuated solids of interest to narrow pulses containing very small amounts of gases, and measuring the concentrations of outgoing molecules permits to study practical catalysts under the conditions approaching those of molecular beam ...

Coupled Heat and Moisture Transfer in Building Components - Implementing WUFI® Approaches in COMSOL Multiphysics

B. Nusser[1], M. Teibinger[1]
[1]Holzforschung Austria, Vienna, Austria

Calculating time-dependent heat and moisture transports trough building components are important tasks in the area of building physics. A well known and worldwide used commercial software for this is WUFI®. From the scientific point of view the restricted access to governing equations is nevertheless a drawback of this software. In the present paper it is shown how the physical approaches used ...

Application of FEMLAB on supercritical hydrogen components of the high flux isotope reactor cold source

Freels, J.D.
Oak Ridge National Laboratory, Oak Ridge, TN

FEMLAB has played a key role in the design and safety analysis of several key components of the new High Flux Isotope Reactor (HFIR) hydrogen (H2) cold neutron source (CS) at Oak Ridge National Laboratory (ORNL). The main components of interest for the detailed analysis capability of FEMLAB are those where the H2 temperature spans a large range causing the fluid properties to change dramatically ...

Temperature profiles of molten flowing polymers in a channel die

Karkri, M.1, Jarny, Y.2, Mousseau, P.3, Poncet, E.1
1 CNRS UMR 6174 Institut FEMTO-ST - Département CREST, Belfort France
2 UMR CNRS 6607 Ecole Polytechnique de l’Université de Nantes, France
3 UMR CNRS 6144 IUT de Nantes, France

Extrusion is one of the important manufacturing methods in many industries. In order to obtain the desired product quality and characteristics, the knowledge of the thermal state of the die is very important. In the present study, a two-dimensional conjugate heat transfer model has been developed for non-Newtonian materials being processed in the extrusion die. The modeling equations for the ...

Error Analysis in Estimating Temperature-Dependent Thermal Diffusivity and Kinetic Parameters using Heat Penetration Data

K.D. Dolan[1,2], A.R. Sommerlot[1], and D.K. Mishra[1]
[1]Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
[2]Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA

Growing consumer demand for nutraceuticals has stimulated interest by food companies to increase levels of these health-promoting compounds. Thermal processing of canned foods in a retort produces a unique problem: some of the nutraceuticals are highly sensitive to temperature, and require accurate parameter estimates to predict their fate during processing. Error in temperature measurement due ...

Modeling the Coupled Mass Transfer Phenomena During Osmotic Dehydration of Fresh and Frozen Mango Tissues

J. Floury[1], Q.T. Pham[2], and A. Le Bail[3]
[1] UMR STLO–INRA–Agrocampus
[2] School of Chemical Engineering and Industrial Chemistry, UNSW
Sydney, Australia.
[3] UMR CNRS GEPEA–ENITIAA, Nantes

In this paper, we present a mathematical model for simulating the mass transfer, during the osmotic dehydration of mango cubes. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but accounts for the mass exchange across the cell membrane and the shrinkage of whole tissue.

Simulation of the Inverse Extrusion of a Brass Rod by the Coupling of Fluid, Mechanical, Thermal and Ale Modules

C. Mapelli, and L. Bergami
Politecnico di Milano

An efficient simulation of the inverse extrusion process has been performed through the coupling of three modules in COMSOL Multiphysics: fluid-dynamics, general heat transfer and ALE. The strain, the strain rate, and the stress field can be completely defined after the complete definition of the velocity field of the material under the action of the tool. The definition of the stresses and of ...

Quick Search