How to Create a Material Database from Spreadsheet Data

Lars Gregersen March 31, 2014

Modeling in COMSOL Multiphysics involves a lot of tasks, such as choosing the right physics, defining the geometry, and setting up boundary conditions and domain settings. Additionally, material properties have to be defined for the materials included in the model. Such material data may come from the Material Library, but it often has to be obtained experimentally or from literature and imported into COMSOL Multiphysics.

Read More

Phillip Oberdorfer March 28, 2014

In this first entry of our new Geothermal Energy series, we introduce the concept of modeling geothermal processes and the many physical phenomena involved. We also show you an example model of a borehole heat exchanger.

Read More

Categories

Thorsten Koch March 27, 2014

To keep up with today’s fast-paced development cycles, R&D engineers and scientists need efficient tools to provide answers quickly and free them from routine tasks. COMSOL Multiphysics® has built-in features like parametric sweeps to increase simulation productivity. In addition to graphical modeling, COMSOL offers an Application Programming Interface (API) that you can use to automate any repetitive modeling step. Here’s how to get started with the COMSOL API for use with Java®.

Read More

Lorant Olasz March 26, 2014

When working with both SolidWorks® and COMSOL Multiphysics® via LiveLink™ for SolidWorks®, you can choose to synchronize selections. Here’s why you should and how to do it.

Read More

Walter Frei March 25, 2014

It is well-known that you can use the RF Module to compute the impedance of lossless transmission line structures, such as coaxial cables of uniform cross section. But did you know that you can also compute an effective impedance for waveguides with non-uniform cross section? Let’s find out how!

Read More

Lexi Carver March 19, 2014

Using the Graphics window in COMSOL Multiphysics can be a little tricky if you’re not too familiar with what it can do. But once you know the shortcuts, controlling the camera and view angles to create good graphics becomes quite straightforward. I hope the techniques shown here will help you produce graphics to visualize and present your work more easily.

Read More

Eyal Spier March 13, 2014

While the mathematical study of chemical reactions has been performed for more than a century, it is only fairly recently that the computational tools for numeric integration of rate equations have been widely available. The old adage of “necessity is the mother of all invention” holds true in this instance. Here, you will find a classical analysis of a non-trivial reaction system, and learn how the simplified solution compares with the “real” one.

Read More

Nancy Bannach March 11, 2014

A lot of materials have anisotropic properties and, in many cases, the anisotropy follows the shape of the material. The COMSOL Multiphysics® software offers different methods for defining curvilinear coordinate systems. Here, we discuss the concepts of each and when to use which method.

Read More

Henrik Sönnerlind March 7, 2014

Buckling instability is a treacherous phenomenon in structural engineering, where a small increase in the load can lead to a sudden catastrophic failure. In this blog post, we will investigate some classes of buckling problems and how they can be analyzed.

Read More

Marc Fernandez Silva March 5, 2014

Being able to compute the spatial gradients of the magnetic field or magnetic flux density is needed in areas such as radiology, magnetophoresis, and geophysics. One of the most important applications is in the design of magnetic resonance imaging machines, where it’s important to analyze not only the field strength, but also the spatial variation of the field. Today’s blog post demonstrates how to compute and plot the gradients of the magnetic field in 3D electromagnetic simulations in COMSOL Multiphysics.

Read More

Mads Herring Jensen February 28, 2014

When modeling acoustics phenomena, particularly of devices with small geometric dimensions, there are many complex factors to consider. The Thermoviscous Acoustics interface offers a simple and accurate way to set up and solve your acoustics model for factors such as acoustic pressure, velocity, and temperature variation. Here, we will demonstrate how to model your thermoviscous acoustics problems in COMSOL Multiphysics and provide some tips and resources for doing so.

Read More


Categories


Tags

1 38 39 40 41 42 46