
Simulation of Optical Properties of the Si/SiO2/Al Interface  
at the Rear of Industrially Fabricated Si Solar Cells 
 
Yang Yang1,** and Pietro P. Altermatt1,2,* 
1Institute for Solar Energy Research Hamelin (ISFH), Emmerthal, Germany  
2Dep. Solar Energy Research, Inst. Solid-State Physics, Leibniz University of Hanover, Germany  
*Corresponding author:  Appelstr. 2, 30167 Hanover, Germany, altermatt@solar.uni-hannover.de 
**On leave from Institute for Solar Energy Systems, Sun Yat-Sen University, Guangzhou, China  
 
 
 
Abstract:  The specular and diffuse reflection 
properties of sunlight at the rear surface of 
silicon solar cells with various degrees of 
roughness are computed by solving the Maxwell 
and material equations in two dimensions, using 
the COMSOL RF MODULE. The model is first 
tested on planar Si/SiO2/air interfaces, where 
perfect agreement with the Fresnel theory is 
attained within numerical precision. The chosen 
simulation domain is similar to typical 
experimental scattering measurements. A 
simulation with planar Si/SiO2/Al interfaces 
confirms an angular resolution of the specular 
beam of about 10°, and a lower resolution limit 
for scattering probability near 10-3. The 
simulations show that for wavelength of 800 nm, 
(i) maximum scattering is achieved with a 
standard deviation for roughness between 50 
nmand 100 nm, (ii) the distribution probabilities 
for scattering are similar (but restricted to certain 
scattering angles) if roughness is produced by 
etching solely the grown SiO2 instead of the Si. 
Output parameters for geometrical ray tracers are 
computed. 
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1. Introduction 
 

In this paper, geometrical structures are 
theoretically investigated on a nanometer scale to 
improve the optical properties of the rear surface 
of Si solar cells. Silicon has a relatively low 
absorption coefficient. Therefore, the amount of 
photo-generation in Si solar cells depends 
crucially on the light trapping scheme [1]: the 
front surface of the cells is commonly textured 
with random pyramids by means of KOH 
etching. The size of the pyramids depends on the 
etching conditions and ideally does only weakly 
influence the effectiveness of light trapping. 
Usually, pyramids with a base length of about 10 

μm are etched, because etching considerably 
smaller pyramids tends to reduce the fractional 
area between pyramids and (near) planar regions. 
For these reasons, the classic pyramidal texturing 
often cannot be applied to thin Si cells [2]. 

An issue is the trade-off between improved 
optical properties and deteriorated electrical 
properties: the pyramidal surface has a higher 
area than a planar surface, causing more 
recombination of photo-generated electron-hole 
pairs before they reach the external contacts. 
Usually, the power output efficiency improves 
with texturing because optical improvements 
dominate the electrical losses. However, there is 
room for improvement of the electrical 
properties. 

For the above geometric and electric reasons, 
there is a large demand to develop “flat” 
texturing schemes. In fact, it is sufficient to 
merely scatter the incoming rays at the rear 
surface (or both surfaces), instead of deflecting 
them. 

Scattering is accomplished by geometric 
features with the size smaller than the 
wavelength of the light. In this paper, we solve 
the Maxwell equations to model the optical 
properties of surfaces that have been roughened 
in a random way. As far as we are aware, the 
first numerical solutions of the Maxwell 
equations at randomly rough surfaces were 
published in 1978 [ 3 ] using the method of 
moments (also called the boundary element 
method). This method is not often used anymore 
because the matrix is fully populated. In 
subsequent years, computing capacity increased 
such that more elaborated models became 
feasible. For example, finite-difference time-
domain (FDTD) simulations at rough surfaces 
were reported in two dimensions in 1991 [4] and 
in three dimensions in 1994 [ 5 ]. These 
simulations usually require a dual tensor grid to 
solve the E- and the H fields, respectively. In this 
paper, we solve the Maxwell and materials 
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equations in two dimensions with the finite-
element simulator COMSOL, using the RF 
MODULE. The matrices are only banded, which 
saves both computer capacity and CPU time 
when applying recently emerged solvers like 
UMFPACK and Pardiso. Also, the mesh consists 
of triangles, which keeps the number of grid 
points to a minimum near the randomly rough 
surface. We investigate the impact of roughness 
on the angular distribution of diffuse reflection. 
Initially, we test the model at planar surfaces by 
comparing the results with analytic calculations. 

Traditionally, the rear surface of Si cells is 
fully covered with an aluminum layer, leading to 
parasitic absorption at the rear surface, i.e. at the 
rear interface between Si and Al. It is well 
known that the reflection at the rear surface can 
be substantially improved by, firstly, growing a 
SiO2 layer and, subsequently, placing the Al 
layer on top of that oxide. Such a planar 
Si/SiO2/Al structure is included in some designs 
of solar cells. Roughening this structure may 
significantly improve the light trapping 
properties of such cells. 
 
2. Numerical model 
 

We use the RF MODULE of COMSOL version 
3.4 to solve the Maxwell equations, 
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and material equations, 
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The symbols have their usual meaning. 
Combining these equations results in 
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We express the electric and the magnetic fields 
by the vector potential A

r
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and insert it into (2) to obtain 
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Our excitations are harmonic (planar waves), 
thus the response (i.e. scattered, reflected, and 
transmitted waves) will also be harmonic. 
Therefore, we factorize (4) in an amplitude- and 
a time-dependent factor: 
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We thus arrive at the well-known time-harmonic 
formulation: 
 

0)(

0)(
21

21

=−×∇×∇

=−×∇×∇
−

−

HH

EE

c

c
rr

rr

μωε

εωμ
     (6) 

 
where εc is the complex permittivity: 
 

ω
σεε ic −=  .         (7) 

 
Although equations (6) appear to be 

independent of each other, they are interrelated 
by (1). We solve (6) with the UMFPACK or 
Pardiso solver after meshing the domain with 
triangles. When meshing, we choose as 
maximum element size one tenth of the 
wavelength λ of the generated radiation, as is 
done successfully in FDTD simulations. We take 
the material parameters for silicon from [6], for 
aluminum from [7], for SiO2 and Ag from [8], 
using 
 
Re(ε) = n2 – k2   Im(ε) = 2nk .    (8) 
 
We do not need to enter σ into the model because 
there holds σ = ωIm(ε) with ω given in (5); 
instead, we define a complex ε = Re(ε) + iIm(ε). 
Since our simulations are in two dimensions, we 
scattering in the TM mode dominates scattering 
in the TE mode.  



3. Simulations of planar surfaces 
 

We test our model first at a planar interface 
structure. The simulation domain and a typical 
solution are shown in Fig. 1. At the left edge, a 
planar wave is generated at a port boundary 
condition. In Comsol’s port boundary excitation  
feature, we define the oblique propagation  angle 
α by  

 
k1x= k0_emwh*n1*cos(alpha),                   (9) 
k1y= k0_emwh*n1*sin(alpha),      
H0z = exp(-i*k1y*y) 
 
with n1 denoting the real part of the refractive 
index and k1x the propagation constant in region 
1, etc. See the Comsol RF guide for the 
definition of k0_emwh. 

The wave then travels towards the planar 
interface. At the upper and lower edges of the 
domain, we use the Floquet boundary condition:  
 
Hdest = Hsourceexp(-ik⋅(rdest – rsource)) .   (10) 
 
The boundary condition ensures that a wave, 
when reaching the bottom edge (source), is 
transposed to the upper edge (destination) with 
the appropriate phase shift. With such periodic 
boundary conditions in the modeling domain, 
one has to take care not to introduce artificial 
effects caused by a diffracting grating with the 
period of the modeling domain. This is 
important, because sunlight has a lateral 
coherence length of about 70 μm [9].  

 
Figure 1. Domain for testing the simulation model at 
the rear surface of Si solar cells. A planar wave with 
vacuum wavelength λ = 800 nm is generated at the left 
edge at an oblique angle. Reflection at the 200 nm 
thick oxide causes a standing wave pattern. Colors: 
absolute E-Feld (TE mode). 

At the interface, the waves get refracted 
according to Snell’s law. This needs to be 
considered in the Floquet boundary conditions in 
the second medium: 

k2x=k0_emwh*n2*cos(alpha2)                 (11) 
n1*sin(alpha)=n2*sin(alpha2) 
 
The boundary condition of the right edge is also 
a port boundary condition but without excitation 
to ensure complete absorption of the incoming 
waves. 

We compute the reflectance as follows: First, 
a background field model in which all layers are 
defined as Si is solved and the power outflow 
(obtained by the boundary integration method) at 
the interface is taken as incident power Pi. Then, 
the Si/SiO2/Al model is solved and the power 
outflow at the interface is taken as transmitted 
power Pt. The reflectance at the interface then is 
R = 1 – Pt/Pi. 

In Figure 2, we compare our simulation 
results at a planar Si/SiO2/Al structure (where the 
air in Fig. 1 is replaced by Al) with analytical 
calculations [ 10 ] using the transfer matrix 
method based on the Fresnel equations. Perfect 
agreement is obtained within the small numerical 
tolerances.  
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Figure 2. Simulated (lines) and calculated (symbols) 
reflectance at the planar Si/SiO2/Al structure with an 
oxide thickness of 50 nm or 200 nm, respectively, as a 
function of the angle of incidence. The simulation 
domain is shown in Fig. 1. The simulation results 
agree perfectly with the analytical theory [10] within 
numerical tolerances. The wavelength λ of the 
incident wave is 800 nm. 

Si SiO2 air 



4. Simulations of roughened surfaces 
 
4.1 Definition of random surface  
 

Surface roughness can be mathematically 
modeled in various ways. Figure 3 shows our 
approach. We choose an equidistant set of 
defining points in the y-direction with distance 
Δy, and a random set of x-values with normal 
(Gaussian) distribution defined by the standard 
deviation σdev. Adding a normal distribution to 
Δy influences the simulation results only 
marginally (as long as σdev << λ). For simplicity, 
we connect these points with straight lines to 
define the rough surface. Smooth Bezier curves 
would represent reality better in most cases, 
however our tests showed clearly that Bezier 
curves influence the simulation results again 
only marginally, as long as Δy << λ.  

 

 
Figure 3. An example of a rough interface, generated 
with the SCRIPT module. 

 
 
4.2 Choice of simulation domain  
 

The simulation domain shown in Fig. 1 is 
unsuitable for extracting the angular distribution 
of scattered waves. Instead, we use the domain 
depicted in Fig. 4, which resembles experimental 
measuring set-ups. The beam of planar waves is 
generated at an average distance rbeam near the 
rough interface in order to minimize diffraction 
effects at the edge of the beam. The rough 
surface section extends well beyond the beam 
diameter d. This has the disadvantage that also 
the diffracted parts of the beam interact with the 
interface, but a smaller random domain would 
cause an overestimation of specular reflection. 
The scattered waves travel towards the circular 
edge at distance redge from the center of the 
interface. The edge consists of segments with 

angular width of 5º, so we can detect the 
outflowing energy with this angular resolution 
by means of the boundary integration feature 
during the postprocessing. All the edges are of 
scattering type, to absorb (or generate) the 
waves. 

From Fig. 4 it becomes intuitively clear that 
an optimum set of rbeam, d, and redge must be 
chosen such as to 

1. minimize the errors in the angular 
distribution of the scattered waves; 

2. minimize artificial effects due to the 
diffracted edge of the beam; 

3. minimize the “shadowing” of the detectors 
at the edge due to the beam generation; 

4. keep the number of mesh points, i.e. the 
required RAM as well as CPU time, to a 
manageable size. 

Presently, we use redge = 20 μm, d = 3 μm, and 
rbeam =5 μm.  

 

 
Figure 4. The domain used for simulating scattering at 
the rough interface. A beam (with diameter d) of plane 
waves impinges on the interface at incident angle α. 
The scattered waves are detected at multiple sections 
of the edge of the domain, such that the angular (β) 
distribution of scattering can be extracted. Colors: 
energy density (absolute Poynting vector). 

   
The beam diameter d ideally must be rather 

large to achieve both (i) a reduced relative 
amount of diffraction at the edge of the ray, and 
(ii) illumination of many interface segments 
(having width Δy) to obtain well averaged 
statistical results. However, a large d requires 
also a large redge (and hence a large mesh) to 
preserve the angular resolution of the scattering 



signal. We choose a compromise by setting d 
small enough so the signal from the diffracted 
beam parts does not limit the precision too much, 
and we obtain a well averaged statistics of the 
scattering intensities by repeating the simulations 
with randomly changed surfaces (per chosen 
σdev) ten to twenty times. 
 
4.3 Choice of the wavelength  
 

The choice of the defining parameters for 
roughness, Δy and σdev, depend on the 
wavelength λ, because scattering phenomena 
scale with λ. The thicker the cell, the longer is λ 
of sunlight that penetrates to the rear surface. 
The cells under consideration in this work are 
about 30 μm thick, where λ = 800 nm is the 
lower limit. We present our results at this 
shortest wavelength, as this poses the highest 
demand on the mesh – remembering that the 
mesh resolution should be at least about one 
tenth of λ. 
 
4.4 Extraction of the optical parameters 
 

We compute the angularly resolved 
reflectance as follows. The boundary integration 
feature of Comsol delivers the outgoing energy 
flux density in units of W/m at the circular edge 
segments, while the generated flux in the linear 
segment is given in units of W/m as well. A 
direct comparison of these two values does not 
render the integrated reflectance R, because there 
is absorption within the silicon. The most direct 
way to arrive at the integrated reflectance, with 
minimal influence from numerical tolerances, 
turned out to be the following. We simulate first 
a planar structure. Integration (summation) over 
all segments in the circular edge yields Iplanar in 
units of W. We multiply this value with a 
constant a such that the R obtained from Fig. 2 
equals R = aIplanar. Then, we simulate rough 
interfaces, and multiply their energy fluxes by 
the same factor a because redge stays the same. 
The values in each segment (the angularly 
resolved reflectivites) then have also the 
meaning of scattering probabilities. 

The simulation results will mainly be used 
as an input for a geometrical ray tracing 
software. There, each photon is traced along its 
pass. At every interaction event at an optical 
boundary, the simulator decides randomly with a 
Monte Carlo algorithm, whether the photon is  

1. reflected, transmitted or absorbed, 
2. whether reflection/transmission occurs 

in a specular or diffuse way, and 
3. if diffuse, in which direction the photon 

continues. 

We need to statistically weight the first 
decision with the integrated R, the transmittance 
T, and the absorbance A, dependent on incident 
angle. For the second decision, we need the 
fraction between specular and diffuse reflection 
or transmission, while for the third decision we 
need a probability distribution of scattering 
angles. These values are extracted from the 
simulation results shown in Figs. 5 and 6. 
 
5. Discussion of results  
 

Figure 5 shows the simulated probabilities as 
a function of angle β (defined in Fig. 4) for two 
different structures:  

(a) a rough Si surface, where the oxide is 
grown, and subsequently Al is 
evaporated; and 

(b) a planar Si surface, where the grown 
oxide is partly etched back, before Al is 
evaporated. 

While in case (a) both interfaces are rough (and 
parallel), only the SiO2/Al interface is rough in 
case (b). Due to Al, T = 0, and only the reflection 
properties are shown. Also, we only show the 
results obtained with an angle of incidence α = 
20°, while the roughness is defined with 
equidistance Δy = 125 nm. 
 
5.1 Resolution/precision of simulations 
 

The planar surface (black curve) indicates 
the angular resolution and precision of the 
simulation method. The angular resolution of the 
specular reflection is about 10°. The diffracted 
edge of the incoming beam limits the lower limit 
of scattering probability to about 10-3 in a 
decreasing manner away from the specular beam. 
This quality is sufficient for generating input to a 
geometrical ray tracer; it may be improved by 
adjusting the simulation domain. Note that we 
linearly interpolate the values in the “shadow” of 
the light source, i.e. between β of 95° and 130°. 
The fluctuations within neighboring segments 
give an impression of how well the signal is 
statistically averaged; 10 simulations turn out to 
be sufficient for probabilities down to 5×10-4. 
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Figure 5 (top and bottom). The simulated scattering 
probability as a function of incident angle β (in 
segments of 5°) for the case of two different interface 
structures shown in the insets. Labels indicate the 
standard deviation of roughness, σdev, and the 
reflectance R (integrated over all angles, including the 
specular beam).  
 
5.2 Scattering properties 
 

The colored lines in Fig. 5 indicate the 
results obtained with various degrees of 
roughness as labeled.   

Surfaces with a standard deviation σdev < 25 
nm cause lass than 10% scattering and fall close 
to our present detection limit. 

From σdev of 25 nm to 50 nm, the angular 
scattering probabilities increase in a congruent 
way, while the integrated R (including the 
specular reflection) decreases slightly as 

 

10-4

10-3

10-2

10-1

100

C
or

re
ct

ed
 p

ro
ba

bi
lit

y

180160140120100806040200

Scattering angle β  [°]

Si Al

SiO2

25
50

α = 20°

σdev:

0.41

0.64

0

Rdiff:

0.3

0.06

0.87

Rspec:
(a)

0.05 0.66100

 

10-4

10-3

10-2

10-1

100
C

or
re

ct
ed

 p
ro

ba
bi

lit
y

180160140120100806040200

Scattering angle β  [°]

Si Al

SiO2

25

50

100

Rdiff:

0.25

0.35

0.22

0

0.87

σdev:

α = 20°

0.12

0.32
0.51

Rspec:
(b)

 
Figure 6 (top and bottom). The same as in Fig. 5, but 
corrected for input in optical ray tracing. The total R 
of Fig. 5 is divided in a specular part, Rspec, and a 
diffuse part Rdiff. 
 
labeled. A similar angular distribution is reported 
in Ref. 4. Interestingly, a σdev > 50 nm reduces 
the angular probabilities, because there is an 
increased amount of interaction with the 
aluminum, leading to more absorption; this 
strongly reduces the integrated R (including the 
specular reflection). The important implication is 
that an optimum σdev exists near 50 nm for 
diffuse reflection, but whether this is beneficial 
to light trapping depends sensitively on the 
amount of specular reflection as well and must 
be decided with a ray tracer. 

The structure (b) with a planar Si/SiO2 
interface causes scattering only to a limited range 
of angles β. All scattered rays reflect from the 



rough SiO2/Al interface and must penetrate back 
into Si, where they get refracted. SiO2 has a 
considerably lower refractive index than Si. 
Hence, rays entering Si from a parallel angle in 
respect to the smooth Si/SiO2-interface have β ≈ 
50° or 135°, respectively. Thus, there is no 
scattering below β ≈ 50° and above 135°, and the 
signals of the various σdev values coincide within 
the statistical limit (which reduces with the 
number of simulations per σdev value).  

Interestingly, the angular scattering 
probabilities of structure (b) are very similar to 
structure (a), just condensed in respect to the 
angle β. Whether this condensation reduces the 
effectiveness of light trapping will be decided by 
means of ray tracing. At σdev = 25 nm, structure 
(b) has higher values of R than structure (a), and 
may be more beneficial for light trapping despite 
its condensed scattering angles. The optimum 
values of σdev, seem to be different among the 
two structures. 
 
5.3 Scattering probabilities for ray tracer 

 
In order to render input values for the 

geometric ray tracer, the data shown in Fig. 5 
must be processed as shown in Fig 6. Because 
our angular distribution is discretized in steps of 
5°, we divide the probabilities in specular Rspec 
and diffuse parts Rdiff. With this, the specular part 
is treated by the ray tracer by the exact Snell’s 
law, but with a lower reflectivity than would be 
obtained with the Fresnel equations alone (due to 
the scattering part). This procedure avoids 
discretization errors to appear in ray tracing. The 
diffuse part needs to be corrected in those parts 
where its probabilities approach the detection 
limit (given by the black curves obtained with 
the planar structure). This can be easily done at 
far angles δ from the specularly reflected beam, 
as for example in the second structure. However, 
at close angles, care must be taken, because these 
scattering parts are completely dominated by the 
angular resolution of the specular reflection. This 
problem has also been addressed in Ref. [4]. 
Fortunately, in light trapping schemes, small 
angular deviations from specular reflection are 
by far not as significant as for example in ray 
tracing for image processing, where glows 
around light sources appear. Hence, we presently 
extrapolate from larger to smaller angles of δ. 
 

6. Conclusions 
 

A COMSOL model for the angular 
distribution of scattering at rough interfaces is 
established, having an angular resolution of the 
specular beam of about 10°, and a lower 
detection limit for scattering probability near 
10-3. A  simulation example shows that optimal 
diffuse reflection is achieved with a standard 
deviation for roughness of about 50 nm. 
 
8. References  
                                                           
1 P. Campbell and M. A. Green, “Light trapping 
properties of pyramidally textured surfaces”, J. 
Applied Physics 62, 243 – 249 (1987). 
2 R. Brendel, Thin-Film Crystalline Silicon Solar 
Cells, Wiley-VCH, Weinheim, Germany, (2003). 
3 R. M. Axline and A K Fung, “Numerical com-
putation of scattering from a perfectly 
conducting random surface”, IEEE Trans. on 
Antennas and Prop. 26(3), 482 – 488 (1978). 
4 C. H. Chan, S. H. Lou, L. Tsang and J. A. 
Kong, “Electromagnetic scattering of waves by 
random rough surface: a finite-difference time-
domain approach”, Microwave and Optical 
Technology Letters 4(9), 355 – 359 (1991). 
5 A. K. Fung, M. R. Shah, and S. Tjuatja, 
“Numerical Simulation of Scattering from Three- 
Dimensional Randomly Rough Surfaces“, IEEE 
Transactions on Geoscience and remote sensing 
32(5), 986 – 994 (1994). 
6 M.A. Green, M. Keevers, “Optical properties of 
intrinsic silicon at 300 K”, Progress in 
Photovoltaics 3, 189 – 192 (1995). 
7 E. Shiles, T. Sasaki, M. Inokuti, and D. Y. 
Smith, “Self-consistency and sum-rule tests in 
the Kramers-Kronig analysis of optical data: 
applications to aluminum”, Physical Review B 
22(4), 1612 – 1628 (1980). 
8 D. E. Palik, "Handbook of optical constants of 
solids", Academic Press, Boston, MS, (1985). 
9 D. A. Gregory and G. Peng, “Random faced 
Fresnel lenses and mirrors”, Optical Engineering 
40, 713 – 719 (2001). 
10 B. Harbecke, “Coherent and incoherent 
reflection and transmission of multilayer 
structures”, Applied Physics B 39, 165 – 170 
(1986). 


