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Abstract: A teaching platform that could be 
used to help students understand concepts such 
as; flux linking and mutual inductance has been 
developed using the AC/DC module of 
COMSOL Multiphysics. This is achieved 
through the accurate determination of different 
magnetic flux density components within the 
proposed geometry. Furthermore, based on the 
structure configuration, students can use 
obtained magnetic flux density components to 
define the appropriate normal component relative 
to any selected closed surfaces. Consequently, by 
simple and direct boundary integration, students 
will immediately get access to accurate values of 
flux linking and mutual inductance, even for 
complex geometries, where mathematical 
calculation becomes prohibitive. The simplicity 
of the procedure permits students get experience 
and appreciation with different induction-related 
concepts, which are considered distant from 
students’ imagination, especially at early levels.  

A reconfigurable 2D geometry which 
consists of three different parallel concentric 
loops has been used for demonstration; where all 
required parameters are evaluated and related in 
a simple straight forward step-by-step flow to 
assist students assimilate induction-related 
issues. 
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1. Introduction 
 

One of the fundamental basic concepts in 
early undergraduate electromagnetic courses is 
the flux linking and associated parameters such 
as; mutual inductance and induced voltage. From 
the mathematical point of view, the calculation 
of these parameters represents a difficult task, 
especially if accurate values are required.  

The problem becomes more complicated, if a 
complex geometry is to be investigated, where 
there are no approximate formulas to be 
compared with, as a final verification step.   

 From the teaching point of view, concepts 
such as flux linking, mutual inductance, 
Faraday’s law and induced voltage, always 
represent real challenging tasks. The fact that all 
these issues are based on the accurate estimation 
of the behavior of the normal component of the 
magnetic flux density over a specified closed 
area necessitates the use of some visualization 
tool that can precisely evaluate and present the 
distribution of different magnetic flux density 
components over any specified part of the 
geometry.  

This would be very helpful for junior 
students in first course of electromagnetism, 
where they are still having some difficulty with 
the imagination of the magnetic flux density 
distribution in a specified region. In addition, it 
would help students use their engineering 
judgment, based on the geometry configuration 
and flux visualization, to determine the 
appropriate normal component of the magnetic 
flux density over any selected surface area. Once 
this is achieved, a second step is also required to 
evaluate the integration of the appropriate 
normal component of the magnetic flux density 
over the surface of the closed area to get the 
amount of flux linking.   

Moreover, to help students understand 
required concepts and get experience, the 
integration step permits students to define any 
closed surface and perform the required 
integration to evaluate, and even compare, the 
corresponding amount of flux linking and its 
dependence on different associated parameters. 
Finally, having evaluated the amount of flux 
linking, Faraday’s law of induction could be 
directly verified, where the definition of the 
mutual inductance becomes easily understood.   
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The paper aims at the development of a 
teaching platform, based on the simulation 
environment of COMSOL Multiphysics, which 
could be used by students and instructors to get 
familiarity with induction-related parameters. 
The used geometry consists of three parallel 
concentric loops as shown in Fig. 1. 
 
 
 

 
 
 
 
 
 

 
Figure 1: Configuration of three concentric loops  

(3D view) 
 
Due to the structure rotational symmetry, the 

2D axial symmetry mode is used to reduce the 
required amount of data storage and 
corresponding computational time. The 2D view 
of the geometry is shown in Fig. 2. 
 
 

 
 

 
 
 
 
 
 
 

 Figure 2: 2D Configuration of three concentric loops  
 
Specifically, for the calculation of induced 

voltage and current in any of the available loops 
due to an excitation current in another loop, only 
one loop is excited, and the magnetic flux 
density is then calculated over the closed area 
formed by the second loop. The third loop is set 
as an air, which has no contribution to the 
problem formed by the two selected loops. By 
doing so, the used geometry could be used to 
study three possible cases; 

 
Case (1); loop_1 is excited, flux is calculated 

over the closed surface formed by loop_2, giving 
rise to the induced voltage and current in loop_2. 

Case (2); loop_1 is excited, flux is calculated 
over the closed surface formed by loop_3, giving 
rise to the induced voltage and current in loop_3. 

Case (3); loop_3 is excited, flux is calculated 
over the closed surface formed by loop_2 giving 
rise to the induced voltage and current in loop_2. 

 
Although it seems that there are still other 

possible cases, it is easy to verify that the 
mentioned three possibilities are the only 
different cases. 

 
The geometry dimensions are; wire 

radius=1.5 mm, loop_1 radius=2.5 cm, loop_2 
radius=2.5 cm, and loop_3 radius= 3.5 cm (loop 
radius is measured from the wire center to the 
symmetry axis). In addition, loop_2 and loop_3 
are in the same plane; z = 0, while loop_1 is 
placed at z = 2.5 cm. Finally, loop material may 
be set as copper or as air, if the loop is to be 
considered as inactive.  

 
 

2. Problem Formulation 
Figure 3 shows two separated closed circuits 

C1 and C2, of surface areas S1 and S2, 
respectively.  

 
 
 
 
 
 
 

Figure 3: Two closed circuits C1 and C2 
 

Consider C1 excited with a time-harmonic 
current I1 that produces magnetic field, then 
using Faraday’s law of induction, the induced 
voltage in C2 is given by; 

 
 

 
 
With φ as the magnetic flux linking S2 

expressed by;  
 

     
 
 

Where; the integration is performed over the 
closed surface S2 and B is the magnetic flux 
density. 
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It is clear that the value of flux linking S2 
depends on the following parameters; magnitude 
of the magnetic flux density B, the area S2 and 
the angle that B makes with respect to the unit 
vector normal to the surface S2.  

Assuming time-dependence in the form tje ω , 
the induced voltage in C2 may be rewritten as; 

 
 

 
 

For a specified closed surface S2, the above 
equation involves both the magnitude of normal 
component of the magnetic flux density relative 
to S2 and the area of the surface.  

 
 

3. Use of COMSOL Multiphysics 
To familiarize students with the effect of 

different factors, in the previous equation, on the 
induced voltage, the proposed structure shown in 
Fig. 2 is simulated using the Azimuthal 
Induction Current Vector Potential application 
mode.   

The following parameters have been set; 
loop_3 is set to be copper wire with an excitation 
by a loop potential of one volt and frequency of 
50 Hz. The selected loop, where induced voltage 
and current are to be evaluated, is set as copper, 
while the third one is set as air. The purpose of 
this first simulation is to help students get 
experience and feeling with the dependence of 
the induced voltage and current, in loop_1 and 
loop_2, on their relative position with respect to 
the excitation loop_3. In other words, this 
reflects the dependence of the induced voltage on 
the magnitude of the magnetic flux density, as 
both loop_1 and loop_2 are of same area. 

 
 The magnitude of the azimuthal component 

of the electric field (Ephi) is shown in Fig. 4.  
 
 

 
 
 
 
 

 
 
 

Figure 4: Azimuthal component (Ephi) of electric field 

The induced voltages in loop_1 and loop_2 
are evaluated as follows; 

 
I. From the data display of subdomain 

parameters, the value of Ephi at the wire center 
corresponding to loop_1 and loop_2 are 
obtained; 

 
Ephi 1 (loop_1)= 0.058∠-100.3 V/m 
Ephi 2 (loop_2)= 0.168∠-100.3 V/m 
 
II. Using the definition of the induced 

voltage across a closed path in terms of the 
electric field, multiply each obtained value of 
Ephi by the perimeter length of the corresponding 
loop, the induced voltage in each loop is 
calculated as; 

 
Vinduced 1 (loop_1) = 9.1x10-3∠-100.3 V 
Vinduced 2 (loop_2) = 26.4x10-3∠-100.3 V 
 
As both loops are of the same area, these 

values demonstrate only the dependence of the 
induced voltage on the magnitude of the 
magnetic flux density B. 

 
Once the induced voltage in each loop is 

evaluated, it is also possible to visualize and 
evaluate the induced current in each of these 
loops. The distribution of the magnitude of the 
azimuthal (Jiphi) component of the induced 
current density over the wire cross section for 
loop_1 and loop_2 is presented in Fig. 5.  
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 5: Current density in loop_1 and loop_2 
 
The total current in each loop is then 

evaluated using subdomain integration for the 
induced azimuthal current density variable (Jiphi) 
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over the cross section area of loop_1 and loop_2, 
where obtained values are; 

 
Jiphi (loop_1) =  24.7 ∠-100 A 

Jiphi (loop_2) = 71.3 ∠-100 A 
 
The second main issue in induction concept 

is the dependence of the induced voltage on loop 
enclosed surface area, which reflects the amount 
of flux linking. Using the proposed geometry, 
students can perform the following exercise 
which clarifies the concept of flux linking. 

To compute and compare between the 
amount of flux linking loop_1 and loop_2, the 
normal component of the magnetic flux density 
should be integrated over the enclosed surface 
area by each loop. Based on the geometry 
configuration, the enclosed surface by each loop 
will be in the form of a circular disc in the x-y 
plane, and consequently the z-component of the 
magnetic flux density Bz will be the required 
normal component. Now, to perform the surface 
integration and calculate the flux, a virtual 
surface should be created as a boundary over 
which the required magnetic flux component 
could be integrated. This is achieved by inserting 
lines connecting each wire center to the 
symmetry axis as shown in Fig. 6. 

 
 
 
 
 

 
 

 
 
 

Figure 6: Inserted lines forming virtual surfaces 
 
Furthermore, to visualize different structure 

elements if all wires and lines are resolved 
around the symmetry axis, Fig. 7 shows the 
obtained 3D version; where inserted lines now 
form surfaces that exactly match the 
corresponding loop enclosed surface area. 

 
Based on the previous simulation, students 

can perform boundary integration on the variable 
Bz component of the magnetic flux density over 
each of the inserted lines B1 and B2, 
representing the surface area enclosed by loop_1 
and loop_2, respectively. 

 
 
 

 
 
 
 
 
 

Figure 7: 3D configuration showing virtual closed 
surfaces for integration purpose 

 
The following values for the total amount of 

flux linking loop_1 and loop_2 are obtained; 
 
φ1 (loop_1) = 2.9x10-5∠-10.3 Wb 
φ2 (loop_2) = 8.4x10-5∠-10.3 Wb 
 
Using these values together with the 

corresponding values for the induced voltages, 
students can easily verify Faraday’s law of 
induction. 

At this point, it should be noted that in the 
used COMSOL model, loops form closed 
circuits where the induced voltage in each loop 
results in an induced current as previously 
presented. Consequently, the induced current in 
each loop will also generate a flux that will be 
added to the flux originally linking this loop due 
to the excited one. In this case, Faraday’s law is 
verified based on its fundamental definition 
which relates the induced emf around a closed 
path to the rate of change of the magnetic flux 
with respect to time passing through the area 
enclosed by the path. 

 
Now, as students are already familiarized 

with the concept of induction, the definition of 
the mutual inductance becomes meaningful. 

Back to Faraday’s law of induction, 
considering now the case where the induced 
open circuit voltage is required;   
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Where; Vinducedij and φ ij are the induced 

voltage and flux linking circuit (i) due to current 
in circuit (j), respectively. In addition, due to the 
fact that circuit (i) does not involve any induced 
current (i.e., open circuit), φ ij  is a linear function 
of only Ij. 

B1

B2



Consequently, it becomes possible to express 
φ ij  as; 

]Wb[IM jijij  =φ  
Where a new parameter Mij is defined and 

called the ‘mutual inductance’ is expressed as; 
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Using the definition of Mij, Faraday’s law 
may be rewritten as; 

 ]V[IMjV jijijinduced  ω−=  

With an alternative definition for Mij as;  
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Using the last definition of Mij, the mutual 
inductance for the following case is evaluated; 
loop_3 is excited using a loop potential of one 
volt and frequency 50 Hz, where the induced 
open circuit voltage is evaluated over loop_2. 

However, to implement Faraday’s law 
correctly based on the above definition for the 
mutual inductance Mij, it should be clear that in 
this scenario loop_2 must be kept as an open 
circuit. For this purpose, the current in loop_2 
should be forced to zero (i.e., simulating an open 
circuit situation) so that the flux linking loop_2 
has no contribution from the induced current in 
this loop. This is achieved by firstly evaluating 
the total induced current in loop_2, then inserting 
the negative value of the induced current density 
in this loop as an external current, resulting in a 
zero total current in loop_2.  

Using the previous comments, the obtained 
values are; 

Vinduced23 (loop_2) = 26.55x10-3∠-95.19 V 
I3 (loop_3) = 1920.85∠-5.19 A 

H10x39.4M 8
23

−=  
For the purpose of verification, the inverse 

situation is also investigated; 
Vinduced32 (loop_3) = 37.146x10-3∠-94.75 V 
I2 (loop_2) = 2691.89.∠-4.75 A 

H10x39.4M 8
32

−=  
From the above calculations, it is clearly verified 
that Mij=Mji, which is a well known property for 
the mutual inductance. 

It is also possible to verify and demonstrate 
that the mutual inductance depends only on the 
geometrical configuration and the permeability 
of the medium. Consequently, the mutual 

inductance could be calculated using the basic 
definition given by;  
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The Mij expression given above could be 
evaluated independently of frequency, i.e.; under 
DC condition. As a demonstration, the 
simulation is performed at zero frequency, where 
the flux linking and the current are evaluated. 
The value of the mutual inductance is given by; 

 
M32= 4.39x10-8 [H] 

Which is the same as that obtained using 
Faraday’s law. 

As a final verification, the obtained result for 
the mutual inductance is compared with 
approximate formula. For the case of M23; the 
following formula may be used; 
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Clearly, there is a considerable difference 
between approximate formula and that obtained 
based on simulation. This is due to the fact that 
the approximate formula is based on the 
assumption that the magnetic flux density is 
constant over the closed area of the closed loop.  
However, in most of actual cases, this 
assumption is not valid.  

The variation of the magnetic flux density 
along the radial distance of loop_2 is evaluated 
and presented in Fig. 8. The calculation has been 
performed at zero frequency, with only loop_3 
excited. It is clearly observed that the flux 
density is not constant over the radial distance 
from the symmetry axis to the center of wire; 
rather it has a large dynamic variation.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Variation of Bz across the radial distance of 

loop_2 



From the obtained results and previously 
mentioned comments, the benefits of using such 
developed platform for teaching purposes are 
obvious.  

 
However, although the presented geometry 

involves only 2D concentric loops, where the 
normal magnetic flux density is clearly the z-
component, another more general 3D geometry 
has been used. Figure 9 shows the case of a two 
parallel non concentric loops.    

 
 
 
 
 
 
 
 
 
 
 

Figure 9: 3D configuration of two parallel non 
concentric loops 

 
Different variations on the proposed 3D 

geometry are possible. Figure 10 shows the 
previous 3D structure, where the two loops are 
no longer parallel. 
 
 
 
 
 
 
 
 
 
 

Figure 10: 3D configuration of two randomly 
oriented loops 

 
It would be a challenging, but interesting, 

exercise for students to follow the previously 
described procedure and apply it on the 
configuration presented in Fig. 10.  In such case, 
students are requested to use their engineering 
experience to determine the normal component 
of the magnetic flux density with respect to any 
selected loop. This is due to the fact that in such 
configuration, the normal component of the 

magnetic flux will not be simply the x- or the y- 
or the z-component, rather a combined formula 
is required. Similarly, the determination of the 
induced voltage in any loop requires line 
integration over the loop perimeter, which will 
not be a simple multiplication process as in the 
2D case. In fact, the general 3D configuration 
shown in Figure 10 represents an advanced step 
to achieve a very useful teaching tool for 
induction-related issues. 
 
 
4. Conclusions 
 

An educational platform that could be used 
in teaching electromagnetic field concepts has 
been presented.  The main advantage of using 
such technique for teaching is that it permits 
student to get access to all elementary 
electromagnetic field variables, which are always 
represented mathematically and thus remain 
distant from students understanding. In addition, 
students can use raw electromagnetic field 
variables to verify different correlated concepts 
based on both visualization and simulation 
results. 
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