

Design of Cooling System for Electronic Devices Using Impinging Jets

Po Ting Lin¹ Ching Jui Chang² Huan Huang³ Bin Zheng⁴

¹Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ, USA ²FTR Systems Co. Ltd., Shanghai, China ³PolarOnyx, Inc., San Jose, CA, USA ⁴School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, China

Oct 13, 2011

Growth of Integrated Circuits

• Moore's Law: Exponential Rise in Transistor Counts

Growth of Heat Dissipation from ICs

- Morse's Law
- High heat dissipation from ICs

BOSICI

CETOBER 13-15

EOMSOL

CONFERENCE

references:

en.wikipedia.org & intel.com &

Raj Nair, International Symposium on SoC, 2007

Air Cooling

- Large surface area for convection
- Forced convection for higher heat transfer coefficient

- Cons of air cooling
 - Size of the fins and fans
 - Noise from the fan

- Built-up dust
- Manufacturing

source: frostytech.com

Why Liquid Cooling?

- Compact system size
- Quiet: <25dB

- Low maintenance
- Easy fabrication

Order of Magnitude for Heat Transfer Coefficients Depending on Cooling Technology

Heat Transfer Coefficient (W/m²K)

source: electronics-cooling.com

THE STATE UNIVERSITY

"A Better Design for PC cooling"

- Better thermal conductivity
 - Conducting material enclosing the fluid
- Better thermal agent
 - Electronic safe and thermal efficient
- Better geometry design
 - Central impinging jet
 - Micro impinging jets
 - Uniform-cross-section central impinging jet

Multi-Physics and Boundary Conditions

Multi-Physics and Boundary Conditions

- In the design, different kinds of inlets/outlets sizes have been selected to find the optimal sizes for the heat convection in the defined symmetric volume.
 - same total volume flow rate (10 liter per hour)
 - same total inflow and outflow area
 - three pairs of inflow and outflow radius have been selected for comparison

 Heat transfer efficiency (e) = the ratio of the total heat flux at the fluid-solid interface and the total exhausted power of the pump.

$\mathcal{V}_{in}(mm)$	V_{in} (mm/s)	$\int q^{''} dA_b (w)$	$\Delta p \cdot A_{in}(N)$	$e = \frac{\int q'' dA_{base}}{\Delta p \cdot A_{in} \cdot V_{in}}$
6	24.56	10.746	3.2912E-6	1.3294E+05
8	13.82	9.473	1.7395E-6	3.9405E+05
10	8.84	7.848	1.5817E-6	5.6128E+05

- Design Considerations
 - Minimize vortexes under the same flow rate
 - Increase the heat exchange surface area
 - Decrease thickness of thermal boundary layer
 - Maximized the heat removal ability
 - Reduce the manufacturing cost with simple design

• Result: Flow streamlines

• Result: Flow streamlines

• Result:

<i>r_{in}</i> (<i>mm</i>)	V_{in} (m / s)	$\int q'' dA_b$ (w)	$\Delta p \cdot A_{in}$ (N)	е
3	9.2294E-2	7.2154	3.5688E-5	2.1906E+6
4	5.5290E-2	5.1856	1.0943E-5	8.5703E+6
5	3.5386E-2	3.3678	4.5190E-6	2.1061E+7
6	2.4573E-2	2.4907	2.5705E-6	3.9431E+7
7	1.8054E-2	1.8866	1.8099E-6	5.7735E+7

Comparisons

Conclusion

- Liquid cooling devices using impinging jets
 - Thin hydrodynamic and thermal boundary layers
 - Good improvement of heat transfer efficiency
- Three different geometry designs

Central impinging jet

- Removes a large amount of heat but requires higher pumping power.
- Has lowest thermal efficiency.

Micro impinging jets

- Consumes a small amount of pumping power and has higher thermal efficiency than first design.
- Has an efficiency gap at R = 2 mm.

Uniform-cross-section central impinging jet

- Consumes the smallest amount of pumping power and removes the heat efficiently.
- Has the highest thermal efficiency.

