Modeling of Microwave Heating of a Rotating Object

Presented at the 2011 COMSOL Conference

John Diamond Raj

UNIVERSITY OF NEBRASKA-LINCOLN

Outline

- Background
- Objectives
- Simulation
- Experimental study
- Results
- Conclusion

Uneven heating in microwave ovens

- Microwave ovens heat food unevenly
- Caused by the standing wave pattern

Factors influencing heating patterns

- Oven features
 - Size and shape of cavity and waveguide
 - Age of magnetron
- Food properties
 - Size and shape of food
 - Constituents
 - Dielectric properties
 - Thermal properties

Effect of food properties

Consequences of uneven microwave heating

- Food borne illness outbreaks
 - Frozen food (esp Not ready to eat food NRTE)
 - Raw and semi-cooked ingredients

Need for modeling microwave ovens

- Predictive microbiology
- Packaging design
- Food Design

Review of literature

- Finite Difference Time Domain using Quickwave by Kopyt and Celuch (2003).
 - Transient positions
 - External software (MATLAB)
- Geedipalli et al (2007) Finite Element using ANSYS and FIDAP
 - One way coupling

- Chatterjee et al. (2007) Finite Volume based FLUENT.
 - Symmetrical uniform field

Objectives

- Simulate the rotation of a cylindrical body in a microwave oven using COMSOL Multiphysics 4.2
- Validate the model using a gellan gel cylinder.

Geometric model

- Based on the Panasonic Model No. NN-SD767W.
 - Rated at 1100 W
 - Actual power output (~900 W)
 - Coaxial port

Properties

Properties	Gellan gel *	Glass
Specific heat, J/kg/K	4160	0.55
Density, kg/m ³	1010	2050
Thermal conductivity, W/mK	0.53	0.1
Dielectric constant	-0.23T+81.103	4
Loss factor	$0.0019T^2$ - $0.264T$ + 18.033	0
*Measured at University of Nebraska – Lincoln and the Oklahama State University		

Domains

Physics used

Microwave heating (mh)

$$\nabla \times \mu_{\mathbf{r}}^{-1} (\nabla \times \mathbf{E}) - \left(\frac{2\pi \mathbf{f}}{\mathbf{c}}\right)^{2} \left(\epsilon_{\mathbf{r}} - \mathbf{i} \,\epsilon^{\prime\prime}\right) \mathbf{E} = 0$$

- Moving mesh (ale)
 - Prescribed movement of turntable and load

dx= $cos(2 \pi N t) X$ - $sin(2 \pi N t) Y$ -X dy= $sin(2 \pi N t) X$ + $cos(2 \pi N t) Y$ -Y

- Free deformation in the air domain

Meshing

- Mesh independence studies
 - Thumb rule (10 elements per wavelength)

Study and solver

- Frequency Transient study
 - Simulated for 30 s of heating
 - Segregated solver
 - Electromagnetic field (E)
 - Heating (T)
 - Moving mesh (xyz)

Solving time

- Desktop computer 7760 s
 - 8 GB RAM
- Cluster computing 3599 s
 - 32 GB RAM
 - 8 nodes

Experimental validation

- 1% gellan gel (80 mm diameter and 50 mm height)
- Validation
 - 4 fiber optic sensors for different locations
 - Thermal imaging camera from FLIR systems

Stationary image

Stationary transient

Simulated vs Experimental profiles

Stationary RMSE 1.22 C

Profile comparison - rotation

Rotating transient

Simulated vs Experimental profiles

Simulated vs Experimental profiles

Stationary RMSE 2.34 C

Two-way coupling issues in COMSOL

- No change of electromagnetic field with change in temperature.
- Original field and temperature properties are used for temperature prediction.

Power absorption (W)

Conclusion

- A reasonable agreement between the model and the experimental results was found based on the transient temperature profiles.
- COMSOL does not couple moving mesh (ale) and microwave heating (mh).
- The results while seeming to agree with the experimental values do raise concerns because of the non changing of the electromagnetic field with temperature.

Acknowledgements

- Dr. Jeyamkondan Subbiah
- Dr. David Jones
- Dr. Sohan Birla
- Krishnamoorthy Pitchai
- Jiajia

Acknowledgements

I wish to acknowledge the support provided by the USDA CSREES – NIFSI grant (Project number: 2008-51110-04340)

Questions?

