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Abstract: This paper presents  a snapshot of 
ongoing research aimed at development of a 
MEMS magnetometer capable of   
��/√�� sensitivity over a wide dynamic 
range, along with its control system, in an 
integrated package. A design for a resonant 
magnetometer utilising a xylophone bar sense 
element(Fig.I) is proposed, analysed and 
optimised using classical techniques and 
COMSOL Multiphysics. As a starting point, 
the resonator is analysed using classical beam 
theory and Fourier analysis, with its control 
transducers modelled as parallel-plate 
capacitors, in a 2D context. Control behaviour 
is extracted by means of a multiple-timescale 
singular perturbation. The control behaviour 
and natural frequencies thus obtained are 
studied in COMSOL using a 3D Structural 
Mechanics based model.  
 
The XBR Q factor and static compliance 
emerge from classical analysis as the critical 
design parameters influencing sensitivity. Thus 
motivated, a further COMSOL model is 
developed, coupling the 3D resonator analysis 
to a 2D PML model representing the substrate 
to which the XBR is attached. Using the above 
approach, the support Q is shown to be very 
high for XBR-type resonators as compared to 
more traditional beam designs. With 
appropriate choice of geometry, achieving 
thermoelastically limited overall Q is seen to 
be possible. The effect of applying a sense 
current is studied via the Joule Heating physics 
interface, and the temperature-dependence of 
the mode shapes, frequencies, and Q factors is 
examined in this context. These results are 
benchmarked against standards from the 
literature, exhibiting close agreement.  
 
Taken together, the results of the COMSOL 
modelling and dynamical analysis of the 
device under parametric drive imply that the 
concept of a parametric XBR holds out the 
promise of realising an inertial grade MEMS 
magnetometer with ��/√��		sensitivity. The 
commercial impact of such a sensor would be 
profound and immediate, opening up whole 

new application classes. Further work is 
necessary to determine whether the theoretical 
potential ��/√�� sensitivity can be achieved, 
which would open up countless applications in 
the growth market of biomedical field 
detection . 
 
Keywords: Support Loss, MEMS, XBR, High 
Q, parametric amplification. 
_____________________________________ 

1. Introduction 
3D vector magnetometers are ubiquitous in 
fields and devices as diverse as aerospace, 
military applications, robotics, and 
geomagnetics, as well as in the rapidly 
expanding handheld navigation and modern 
smartphone markets. Typically, they are 
employed in an IMU to negate zero-point 
accelerometer drift.  
 
There exists a performance dichotomy between 
high-performance macroscopic inertial grade 
magnetometers and automotive grade MEMS 
more often found in vehicles, smartphones, 
and consumer electronics. The former possess 
the necessary field sensitivity for precision 
navigation while the latter do not. For a 
precision IMU, a typical sensitivity 
specification is on the order of 1-10	��/√��. 
Current MEMS magnetometers are orders of 
magnitude away from achieving inertial grade 
performance[1]; demand exists for inertial 
MEMS magnetometers inasmuch as their 
realisation would vastly expand the scope of 
precision inertial navigation, with applications 
to guided projectiles, indoors/ underground 
navigation, aerospace/spaceflight, and other 
areas. 

.    
    1.1  Resonant sensors and the Xylophone 
bar Magnetometer 
Resonant sensing refers to the technique of 
using a high-Q resonator as the sense element 
and arranging operation such that the 
phenomenon of interest drives the resonator at 
its natural frequency. The advantage lies in the 
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fact that the resonator selectively stores energy 
at its natural frequency, increasing the 
sensitivity to the effect of interest by the Q 
factor, which can exceed 10�, while rejecting 
off-resonance noise spectral components.  
 
The Xylophone Bar Magnetometer was 
developed at Johns Hopkins University in the 
1990s[2].   The fundamental concept is to 
attach the supports in such a way as to make 
the impedance seen by the wave modes of 
interest as large as possible, ideally infinite.  
This condition, in the limit, results in total 
reflection of the wave at the support-resonator 
interface, and hence zero energy leakage to the 
environment via this mechanism[3]. 
 
The XBR realises this condition  by attaching 
the supports at the predicted node points of the 
first mode of the resonator considered under 
free boundary conditions.  
 

 
Fig. I: Schematic representation of resonator 
geometry and operating principle of an XBR. The 
electrodes carry a time dependent voltage V(t). 
 
2. Resonator System Dynamics 
   
   2.1.  Beam dynamics 

 
Fig.II: Terminology and sign conventions for 
analytical purposes.   
 

With reference to Fig.II, the potential and 
cokinetic energies of a free-free beam under 
electrostatic actuation can be readily found as: 
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Assuming linear damping via a Rayleigh 
dissipation function and applying the extended 
Euler-Lagrange equation, we arrive at the 
system equations of motion:  
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Applying separation of variables and Fourier’s 
method with free boundary conditions, the 
mode shapes are obtained as 
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And the generalized coordinate corresponding 
to mode I can be shown to obey 
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2.2.   Parametric amplification 
Parametric amplification refers to the 
exploitation of parametric resonance in a 
resonator to increase the sensitivity of the 
system to external harmonic stimuli at the 
natural frequency of interest.  For a detailed 
exposition of the topic in the context of 
resonant sensors, see[4].  
 
In order to excite primary parametric 
resonance and to force the device at its 
fundamental mode, we choose the frequency  
components of V(t)  to include 

��

�
and 2�
, 

where �
 is the natural frequency of Mode I of 
the beam under free boundary conditions. 
 
Taking the parametric strength � to be small 
relative to the mechanical stiffness of the first 
mode, this quantity can be used as a basis for a 
multiple timescales asymptotic approximate 
solution to (II).  Application of this 
perturbative technique yields the approximate 
equation of motion for the first generalized 
coordinate as 
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Where �is a nonlinear function encoding the 
parametric strength, becoming unbounded as 
the strength approaches a critical value, F is 
the forcing term, and Q is the system quality 
factor.  
 
To give the above result some physical 
meaning, observe that the response amplitude 
is proportional to the static compliance of the 
device, to the resonator Q factor, and to �. �	acts to multiply Q in a smooth, scalar 
fashion, which is equivalent to reducing the 
effective damping in the system. 
 
3. Design for Q 
    
   3.1.   Sources of dissipation 
The Q factor is defined such that it is 
proportional to the reciprocal of the 
dissipation. Hence, independent dissipative 
contributions sum in a linear fashion, and the 
Q factors from N dissipation sources combine 
according to  
 1������
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Some important contributions for the present 
case are considered below to put the 
subsequent modeling in its proper context.  
      
   3.1.1. Gas damping 
For beam resonators operating under 
atmospheric conditions, gas damping effects 
are generally dominant. In particular, cyclic 
viscous pumping of the thin layer trapped 
between the resonator and a capacitive actuator 
or sensor is significant.   It can be shown[5] 
that, to a good approximation, in a rarefied 
atmosphere typical of modern vacuum 
packaged devices, 
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For high-performance devices where 
packaging costs do not dominate, modern 
wafer-level hermetic technology allows for 
operation under high vacuum in the field, 
largely negating this effect. 
 
 
 

 
   3.1.2. Thermoelastic damping(TED) 

 
 
Fig. 3: Mechanism of TED in an XBR, illustrated 
via a 2D COMSOL eigenfrequency analysis.  
 
Thermoelastic damping of a resonator 
describes the loss of usable energy to 
irreversible heat transfer that is driven by 
elastic strain-induced temperature gradients in 
the material[6]. The following approximation 
agrees very well with experiment: 
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This constitutes a hard limit on the Q factor; 
the theoretical potential sensitivity of a given 
resonator geometry is approached 
asymptotically as other dissipation 
contributions are made smaller than this value.  
    
   3.1.3.  Support loss 

 
 
Fig. 4: Mechanism of support loss, illustrated 
through a simple 2D time-dependant COMSOL 
simulation of a clamped-clamped beam resonator 
connected to linear isotropic elastic substrates, 
modelled as infinite by the addition of a PML. A 
higher order transverse mode is shown, 
 
Momentum transport by means of wave 
radiation into the resonator substrate 
constitutes a source of dissipation termed 
support loss. After controlling ambient 
pressure to mitigate gas effects, support loss 
can often be the dominant source of dissipation 
for beam resonators[3].   However, it is highly 
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sensitive to resonator geometry; indeed, the 
purpose and advantage of an XBR over other 
geometries lies in the reduced support losses 
on offer, as suggested above.  Hence, a 
quantitative understanding of support loss in 
XBRs is critical to optimizing the performance 
of an XBM.    
 
   3.2. Substrate wave modelling 
The mechanical radiation that constitutes 
support loss consists of displacement waves 
propagating in the substrate to which the 
resonant element is anchored.  For MEMS 
devices, this is typically a planar structure 
many orders of magnitude larger than the 
resonator; hence, boundary effects and 
reflections can be neglected, and it is safe to 
assume that all energy leaving the resonator 
via mechanical coupling to the substrate is lost 
to the environment.  On this basis, an 
appropriate model for the substrate is an 
infinite elastic half-plane. 
 
   3.2.1: Analytical models 
The physics of isotropic linear elastic wave 
propagation in such a domain has been 
examined in the past, with Miller and 
Pursey[7] deriving closed-form exact 
analytical expressions for the total energy flux 
from a narrow distributed radiation source on 
the free surface of the half plane. 
 
These expressions have been used[8] to 
estimate the support Q for C-C and cantilever  
beams, with good experimental agreement. 
This was done by considering only shear 
forces at the substrate-resonator interface, the 
moments and normal forces being negligible 
for that particular case. However, the very 
purpose of the XBR is to reduce towards zero 
the forces experienced at the interfaces of its 
support beams with the substrate; any model 
capturing the effect of XBR geometry must 
therefore include shear and normal forces, the 
effects of which can be superposed owing to 
the linearity of the problem.  
   
It only remains, then, to obtain expressions for 
the normal and shear interface forces at the 
support interfaces of the XBR to complete an 
analytical model of XBR support loss.  
 
   3.2.2: COMSOL anisotropic PML model 
The analytical approach outlined above 
describes the planar isotropic case to a good 
approximation. However, for a MEMS 
implementation, the anisotropy of Si will lead 

to deviations from this model in 
implementation. An analytical model dealing 
with the anisotropic elasticity would be 
unwieldy, but COMSOL and the FEM can 
handle this behavior naturally.  
 
   3.3.  Dissipation modeling approach:                                                     
validation 
Hao et al. derived the following expressions 
for the Q factor associated with the nth mode 
of a clamped-free and clamped-clamped beam, 
respectively: 
 

 
 
Cantilevers of fixed length and parametrised 
height in the plane of vibration were chosen as 
test cases and implemented parametrically in 
COMSOL as validation for the modeling 
procedure.  
 

 
Fig. 5: Comparison of COMSOL PML simulation 
of a cantilever resonator with analytical result from 
Hao et al. Note agreement within 10 percent over an 
order of magnitude. Good agreement is seen; this 
supports the validity of the COMSOL modelling. 
 
   3.4.Dissipation modeling I: XBR modal 
dynamics 
The model developed in Section 2 delivers 
useful insight into the control behavior of the 
resonator, and supplied the motivation to 
investigate the Q factor as important design 
parameter.   However, since it assumes 
perfectly compliant supports, it has nothing to 
say about support loss, which occurs precisely 
due to imperfect substrate-resonator 
decoupling. A model including the dynamics 
of the support beams is required for this 
purpose, and is developed in the sequel.  
 



 5

   3.4.1. XBR Rayleigh-Ritz model 

 
Fig. 6: Geometry, boundaries,, fields and 
coordinates for XBR Rayleigh-Ritz approximation. 
 
The XBR can be analysed by defining spatial 
variables .� , � ∈ 11,2,3,43	and corresponding 
Euler-Bernoulli fields 
�, as indicated in Fig. 
6.  Exploiting the symmetric geometry of the 
resonator and applying appropriate boundary 
conditions, as given in Table 1 below, and 
assuming complex-exponential trial functions, 
the Rayleigh-Ritz method gives a tractable, 
analytical approximation for the system.   
 
This quasi-1D model gives the required 
approximations for the shear and normal forces 
at the distal ends of the support beams ((1) in 
Fig. 6).  See Sect. 3.5.2 for a comparison of the 
solutions yielded by the two approaches. 
 
  3.4.2. COMSOL Thermoelectromechanical 
(TEM) model 

 
Fig. 7. COMSOL swept mesh of XBR geometry. 
This simple configuration was found to promote 
rapid convergence, due to excellent minimum 
element quality properties. 

 
To attack the same problem in COMSOL, a 
fully parametric model of one half of the 
resonator geometry was developed, using the 
same symmetry exploited in Sect.3.4.1, as 
shown in Fig.7.  
 
Boundary Solid Mechanics 

B.C. in 
COMSOL 
model(Fig.XXX) 

Analytical 
B.C.(Fig. 6) 

Support 
Interface(1) 

Fixed 
� � 0, 
� � 0  � ∈ 11,2,3,43 
Symmetry 
boundary(2) 

Symmetry 
�|� � 0, 	
� |� � 0 
Node point Internal (FE 

continuity) 
Slope 
Continuity, no 
displacement 

All other 
boundaries(3) 

Free 
�  � 0, 
�   �0  � ∈ 11,2,3,43 
Table 1: Comparison of analytical and COMSOL 
boundary conditions for mechanical models. 
 
This approach incorporates more effects of interest 
than the Rayleigh-Ritz approach given in Sect. 
3.4.1. In particular, the multiphysics capability of 
COMSOL facilitates modeling of the temperature 
dependence of the material properties of the 
resonator and the resulting interaction between 
applied sense current and the XBR dynamics. 
 
   3.5.  Multiphysics coupling: Joule Heating  

 
Fig. 8: COMSOL plot of coupled 
thermoelectromechanical model. Colour denotes 
temperature: deformation corresponds to the 
deflection field U. 
 
The XBM, in contrast to most other 
micromagnetometers, can achieve a dynamic 
range spanning 9 or more orders of magnitude, 
from 1 �  or larger electromagnet fields down 
to the 4� level discussed. This is achieved by 
controlling the product of the field strength 
and the sense current to remain within an order 
of magnitude of a nominal value, and in the 
small field limit is constrained only by the 
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applicable sense current. Hence it is of interest 
to examine the relationship between the 
applied sense current, the temperature 
distribution in the device, and the dynamic 
response.  
 
This was realized by using a 2-stage 
segregated solver: first, the Joule Heating 
interface and a Stationary study was employed 
to model current flow and resultant heat 
generation in the device, as a function of the 
driving voltage parameter; secondly, a variable 
corresponding to an approximation for the 
thermal dependence of the Young’s modulus 
was defined and used to define the material 
properties in the Structural Mechanics model 
described in Sect.3.4, and the model solved 
using an eigenfrequency analysis. 
 

 
Fig. 9: COMSOL plot of XBR mode shapes for 
different values of the sense current. Joule heating 
effects result in inhomogeneous stiffness, leading to 
the observed change in mode shapes. 
 
   3.5.1 Effect on operating Q 
 
To obtain respective estimates of the support Q 
from the analytical and COMSOL models, it is 
necessary to translate the calculated interface 
forces to a corresponding rate of dissipation. 
This is achieved via the use of the approach 
outlined in Sect.3.2.1 and Sect.3.4.1 for the 
analytical model, and using the PML method 
of Sect. 3.2.2 for comparison. 
 

 
 
Fig. 10: Plot superposing analytical prediction of 
device Q factors with COMSOL estimate. The 
independent variable is applied sense voltage; the 
dependent variable is support Q factor. The black 
plots indicate analytical predictions; the coloured 
plots indicate the corresponding COMSOL results. 
Series I, II, and III correspond to different 
geometries (small perturbations of the support width 
around the tuned value). 
 
Good agreement is observed between the two 
models over a range of geometries when no 
sense current is applied in the COMSOL 
model (and hence Joule Heating effects are 
neglected), as can be seen in Fig. 10. A 
substantial drop in support Q is seen as the 
applied sense current rises.    
 
   3.4.3 Design implications  
The nominal dimensions of the model and first 
prototype were tuned for maximum Q using 
the analytical model given in Sect. 3.4.1. 
Permutations of small geometric changes in 
the above model were iterated using a 
Parametric study, fine-tuning the model to 
account for the effects of Joule Heating and 
variable material properties.  It was found  that 
at higher applied voltages, the optimal 
attachment point moved towards the distal 
ends of the sense beam. Additionally, the 
results required retuning of the natural 
frequencies such that the support beam natural 
frequency of interest was slightly lower than 
that of the sense beam, due to the larger 
temperature increase and hence softening 
effect in the latter. This is in contrast to the 
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analytical model, which suggests perfect 
mode-tuning as the optimal condition.  
 
4. Conclusion  
The steady-state system response is given in 
Sect.2.2, as a function of forcing strength, 
parametric pumping, and classical Q factor. 
The forcing per unit applied field is well 
known as the cross-product of the sense 
current and the ambient transverse flux 
density, integrated over the sense element. The 
field sensitivity of the device as a 
magnetometer corresponds to the minimum 
change in response detectable, which is a 
known function of the control electronics.  
Using the tuned Q factors from Fig.10 and the 
parametrically amplified response amplitude 
expression , and assuming a parametric gain � 
of 100, the response amplitude enters the 1-
second detectable range at a field strength of  
734	��. Hence, the field resolution with a 
sampling interval of 100 Hz is estimated to be 
7.34	��	– sufficient for true inertial-grade 
performance.   
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