

Modeling Fluid-Induced Porous Scaffold Deformation

Jagdeep Podichetty, Sundar Madihally

Laboratory of Molecular Bioengineering School of Chemical Engineering Oklahoma State University, Stillwater, OK 74078

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

* Based on OPTN data (http://optn.transplant.hrsa.gov/data/)

Culture cells in bioreactor

Populate cells

Tracheal Tissue Engineering

Windpipe transplant success in UK child

Africa

David Green, Harvard Bioscient

Bioreactors

Systems for regenerating tissues under physiological conditions

Perfusion (heart valve)¹

- 1. Deutsches Herzzentrum Berlin®
- 2. Monoclonal antibody facility, Univ of Chicago, IL
- 3. Applied Medical Engineering, Helmholtz Institue of RWTH Aachen University and Hospital

Hollow fiber (heart valve)²

Pulsatile flow (Vascular grafts)³

Flow-through (small construct)³

Objective

We have design and tested nearly 50 bioreactor designs

- 1. Lawrence et al. *Biotechnology/Bioengineering*. 2009
- 2. Devarapalli et al. Biotechnology/Bioengineering. 2009
- 3. Pok S et al. Computer Methods in Biomechanics and Biomedical Engineering. 2011
- 4. Podichetty et al. Biotechnology Progress. 2012
- 5. Patrachari et al. Journal of Bioscience and Bioengineering. 2012

Apply fundamental concepts to tissue bioreactor design to understand fluid induced scaffold deformation

Scaffold deformation using 3D modeling

Scaffolds properties

Method of making the scaffold	Freeze-drying	Salt-leaching
Scanning electron micrographs showing pore morphology (dry).		Ви
Pore morphology	Circular	Rectangular
Permeability determination ¹	$\kappa = \frac{\pi}{128} n_A d^4$	$\kappa = \frac{n_A L W^3}{12}$
Calculated Permeability value	$k=7\times10^{-11} m^2$	$k=7\times10^{-10} m^2$
Elastic modulus (experimentally	2 (±0.5) kPa	7000 (±1000) kPa
determined at physiological condition)		
Poisson ratio ¹ (experimentally determined using ASTM E132-4 (or ASTM E1876–09))	1 (±0.1)	0.3 (±0.1)

1. Podichetty et al. Biotechnology Progress. 2012

Scaffold deformation using 3D modeling

Noticeable Deformation @ 20 mL/min

2-way coupling predicts pressure drop 2500 PCL Experiment ∇ **PCL Simulation** \bigcirc Chito-Gel Experiment [1] 2000 ∇ Chito-Gel Simulation -rigid [1] (kPa) 1200 ∇ Chito-Gel Simulation -E=50 kPa ∇ ∇ Drop ∇ ∇ $\overline{\mathbf{v}}$ 1000 ∇ Pressure \mathbf{V} 500 $\mathbf{\overline{\forall}}$ 300 200 Q 100 \bigcirc \bigcirc 0 5 10 15 20 25 0

Flow rate (mL/min)

[1] Podichetty et al. Biotechnology Progress. 2012

A non-invasive way of monitoring tissue growth

Summary

Rigid scaffold assumption

- Large deviation from experimental results
- Inaccurate prediction of pressure drop
- Two-way coupling of structural mechanics with fluid flow
 - Satisfactorily predicts experimental pressure drop for a boarder range of scaffold properties
 - Extended to tissue properties range

Thank you for your time

Questions

A non-invasive way of monitoring tissue growth

