

Swiss Confederation

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL

J. Hansmann¹, M. L. Sentis¹, C. Belardinelli², B. J. Graupner¹, M. Hugi¹ and A.-K. Leuz¹

¹Swiss Federal Nuclear Safety Inspectorate ENSI

²Kantonsschule Solothurn

COMSOL Conference Milano, Italy, October 10-12th 2012

V

Outline

- Introduction
- Conceptual model
- Results
- Model issues
- Conclusions

Introduction

The Sectoral Plan for Deep Geological Repositories

Three stages of the general licensing procedure:

Selection of geological siting areas (HLW and L/ILW repositories)

Stage 2 2014/15

Selection of at least two potential sites (per repository type)

Stage 3 2019/20

Site selection and start of general licensing procedure

Introduction

Swiss Federal Nuclear Safety Inspectorate ENSI

- National regulatory body with responsibility for the nuclear safety and security of Swiss nuclear facilities
- Some important tasks of ENSI with respect to site selection procedure for deep geological repoitories:
 - has general responsibility for safety related review
 - reviews proposed geologic site areas (stage 1) and sites (stages 2 and 3)
 with respect to safety and technical feasibility
 - provides scientific and technical knowledge to authorities, stakeholders and the public
 - performs independent calculations of radionuclide transport to check compliance with the regulatory dose limit (<0.1 mSv/year)

Gips / Anhydrit

regionaler Tiefenagutler lokaler Tiefenaguifer lokale Wasserführung móglich

Conceptual Model

Initial and Boundary Conditions

zero concentration/ const. head (so that gradient is 1m/m)

"Darcy's Law" module

"Solute Transport" module

Initial and Boundary Conditions

no flow / no flux
due to symmetry

"Darcy's Law" module

"Solute Transport" module

Initial and Boundary Conditions

Source term as an initial concentration

selected radionuclides in this case: I-129, Se-79 and Cl-36

decay during transport

"Darcy's Law" module

"Solute Transport" module

ResultsModel Case Study A

- Low and intermediate level waste
- Host rock "Opalinus Clay"
- Confining units ("Brauner Dogger", claystone, marl and sandy limestones)
- Total length of transport path approx. 100m

100m

Results

ResultsModel Case Study B

- Long-lived and intermediate level waste
- Host rock "Opalinus Clay"
- Confining units neglected
- Total length of transport path approx. 20m

Results

Model Case Study B

ResultsModel Case Study B

Model issues

• Fine mesh important for correct mass balance (initial concentration)!

Correct cross sectional area of cavern: $4.95^2\text{m}^2 * \pi \sim 76.98\text{m}^2$

V

Model issues

- Fine mesh important for correct mass balance (initial concentration)!
- "Negative" concentrations can occur in the model, when the "real" concentration is very low or at sharp concentration fronts

expression: c<0 (i.e. 1 means c<0)

Conclusion

- COMSOL is a robust tool, that (among other codes) has been and will be used by ENSI for radionuclide transport calculations.
- ENSI's calculations in the presented case studies yield similar results to Nagra. The minor differences are most likely due to different codes that were used.
- Some technical issues (degree of meshing detail, "negative" concentration issues, …) have to be kept in mind.
- ENSI is working on the implementation of COMSOL for radionuclide transport calculations in fault zones and 2-phase flow.

Thank you very much for your attention!

