
 

 

Miscible Viscous Fingering: Application in Chromatographic 
Columns and Aquifers 

 
S. Pramanik, G. L. Kulukuru, and M. Mishra* 

Indian Institute of Technology Ropar, Rupnagar – 140001, Punjab, India 
*Corresponding author: Department of Mathematics, IIT Ropar, Nangal Road, Rupnagar – 140001, Punjab, 
India, E-mail: manoranjan.mishra@gmail.com 
 
 
Abstract: Miscible fluid flows occur in a wide 
range of industrial and biological processes in 
which viscous fingering is observed. Here our 
main focus is to model miscible viscous 
fingering (VF) using COMSOL Multiphysics. 
We study the effect of the positive and negative 
log-mobility ratio on the fingering phenomenon 
that appears in chromatographic columns and 
aquifers. Study has been conducted in 2D 
Eulerian frame for different injection speed and 
different log-mobility ratio. The dependence of 
mixing length and number of the fingers on 
various governing parameters in applications to 
chromatography and aquifers are presented. We 
also tried to examine the performance of our 
model by computing execution times for 
different meshes. 
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1. Introduction 
 

When a less viscous fluid displaces a more 
viscous one in a porous medium or Hele-Shaw 
cell, the interface between the two miscible 
fluids does not remain flat and deforms into 
fingers growing in time [1]. It occurs due to the 
faster movement of less viscous fluid than the 
more viscous one, for a given pressure gradient. 
Fingering affects in aquifers, in packed bed 
reactors, and detrimental to chromatographic 
separation, groundwater contamination and many 
other systems. In these cases the two fluids under 
consideration do not extend over semi-infinite 
regions. Rather the displaced fluid is extended 
over a finite region and bounded with two semi- 
infinite displacing fluid region. This situation is 
drastically different form the situation when one 
fluid is displaced by another fluid both extended 
over semi-infinite domains, which appears in 
petroleum recovery from underground reservoir.  

   Viscous fingering is also of much concern in 
the dispersion of finite polluted viscous zones 
inside aquifers and in chromatography columns 

[2-5]. Liquid chromatography process separates 
the chemical components of a given sample by 
passing it through a porous medium. 
Displacement of the sample by a carrying fluid 
the eluent	
   of different viscosity may lead to 
viscous fingering of either the front or the rear 
interface of the sample slice, leading to 
deformation of the initial planar interface. In 
these two applications, the viscous sample is 
generally of finite length. Viscous fingering 
occurs then at the interface where the less 
viscous fluid displaces the more viscous one, the 
other interface being stable. Numerical studies of 
the influence of fingering on dispersion of finite 
viscous samples using COMSOL Multiphysics 
has allowed the understanding of the fingering 
dynamics of such localized viscous zones where 
the instability is then only a transient 
phenomenon contributing to widening of the 
peak and comparison with other classical semi-
infinite domain model [6] has been obtained.    
 
2. Problem formulation 
 

A fluid of viscosityµ01 , injected at a 

uniform velocity u =U0  from the left of the 

domain, displaces another fluid of viscosityµ02  
in a homogeneous porous medium. Both the 
fluids are considered to be incompressible and 
neutrally buoyant to neglect the density driven 
fingering. The problem has been modeled by 
coupling evolution equation for sample solvent 
concentration with a fluid flow equation in two-
dimensional porous media or Hele-Shaw cell and 
they are: 

∇.u

= 0                                        (1)

∇p = −µ
k
u

                                   (2)

∂c
∂t
+u

.∇c = D∇2c                        (3)

 

 



 

 

The first equation expresses the equation of 
continuity, which represents the conservation of 
mass for incompressible fluids. Eq. (2) 
corresponds to the momentum equation in the 
form of a Darcy’s law for the flow in porous 
media. The transport of solvent concentration is 
characterized by the convection-diffusion 
equation (Eq. (3)). For the flow in porous media 

u


represents the Darcy-velocity, k  is the 
permeability constant of the medium, p dynamic 
pressure and µ  the kinematic viscosity of the 
fluid. For fluid motion in Hele-Shaw cell the 
above formulation is valid if the small 
gap d between the two parallel plates is such that 

the permeability of the medium is k = d 2 12 . 
In our model the viscosity of the fluids 

depends on the concentration of the solvent. The 
kinematic viscosity has been considered as an 
exponential function of the concentration [1]: 

µ(c) = µ01e
Rc                  (4)  

where R is the log-mobility ratio given by 
 

R = ln(µ02 µ01)                           (5)  

µ10  and µ02 are the kinematic viscosities of the 
displacing and displaced fluids, respectively. 
 
3. Model in COMSOL Multiphysics 
  

Here, the classical model of miscible viscous 
fingering (VF) has been investigated, using the 
COMSOL Multiphysics CFD modules. The 
implementation has been done using two-phase 
Darcy’s law model, which couples the steady 
Darcy flow equation with the time dependent 
convection-diffusion equation for the 
concentration. This model considers two phases 
of fluids having different saturations 1s and 2s . 
The concentration of the fluid c is the product of 
the saturation 1s and the density 1ρ . With the 
assumptions of constant values of 
densityρ = ρ1 = ρ2 , porosity pε , 
permeabilityκ , relative permeability 
κ r1 =κ r2 =1 , viscosity µ = µ1 = µ2 , in the 
model equations of two-phase Darcy’s law (tpdl) 
of COMSOL Multiphysics reduce to the 
governing equations (1)-(3).  The dependence of 
the viscosity on the concentration is maintained 

in this model through the saturation 1s , can be 
given as 

µ = µ01e
R  s1                              (6)  

In this model a rectangular domain of length Lx 
and width Ly is considered. A fluid of 
viscosityµ01 is entering the domain from the left 

of it with a uniform velocityU0 , which displaces 

another fluid of viscosityµ02 .  
 The above-mentioned situation is 
implemented as follows: The inlet boundary 
condition at x = 0 is specified as the Dirichlet 
conditions for the velocity as well as the 
saturation of the displacing fluid, which 
mentions the injection speed of the displacing 
fluid u =U0 and saturation 01 =s . At the outlet 

boundary x = Lx the concentration of the 
displacing fluid is specified as Neumann 
condition∂c /∂x = 0 , whereas the pressure as 
Dirichlet condition p = 0 . Neumann type 
boundary conditions are specified at the 
boundaries y = 0 & y = Ly for the velocity, i.e. 
the fluid does not leak out of the domain through 
these boundaries. 
 
 As initial condition a linear velocity profile 
has been chosen which satisfy the boundary 
conditions. The saturation of the displacing fluid 
is taken to be 
 

s1(t = 0) =

0,                             x < Lx / 8  
0.5(1+ζ f (x, y)),     x = Lx / 8
1,                             Lx / 8< x < Lx / 8+W
0.5(1+ζ f (x, y)),      x = Lx / 8+W
0,                            x > Lx / 8+W  
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Here the function f (x, y) represents a two 
dimensional random function having mean 0.5 
and ranging from 0 to 1. This describes a 
disturbance to the initial condition to trigger the 
instability. ζ denotes the amplitude of the 
disturbance. The initial state of the saturation of 
the displacing fluid 1s  is implemented using a 
combination of three analytic functions and a 
random function. These settings have been used 
for our simulation with their values listed in the 
Table 1. To obtain the fingering instability the 



 

 

initial disturbances are given at the interface of 
both miscible fluids only, unlike Holzbecher [6], 
in which a similar model of VF has been 
obtained using the initial disturbances over the 
whole region of less viscous displacing fluid. 

The model equations are discretized 
according to the finite element method 
discretization. The coupled system is a time 
dependent problem as the concentration of the 
fluid goes through temporal evolution. The 
resultant non-linear equations are solved using 
the non-linear solver MUMPS while for the 
temporal evolution we use the backward Euler 
method. The numerical solution is obtained in a 
Eulerian system. 

 
Table 1:  List of parameters 

 
Parameters Symbols Value & Unit 

Length of the 
domain 

Lx 0.08 mm 
0.128 mm 

Width of the 
domain 

Ly 0.02 mm 
0.032 mm 

Amplitude of the 
disturbance 

ζ 0.01 

Log-mobility ratio R -2, 2, 3 

Injection speed U0 1 mm/s 
0.5 mm/s 

Viscosity of the 
displacing fluid 

µ1  10-3 Pa-s 

Aspect ratio 
 

A 4 

Length of the finite 
sample 

W = Lx/8 0.01 mm 
0.016 mm 

 
Initially we did a test run of our simulation 

with three different types of meshes over a 
rectangular domain of size 0.08× 0.02 mm2. The 
injection speed for these test runs is U0 = 1 
mm/s, the log-mobility ratio is taken to be R = 2 
and the length of the finite sample is chosen W = 
Lx/8 = 0.02 mm. The number of elements, 
degrees of freedom for which the problem is 
solved for and the simulation taken time for 

those three meshes is listed in the Table 2. It has 
been observed that second meshing (extra fine) 
gives quite good result and takes moderate 
computational time. So, “extra fine” meshing has 
been used for further simulations. 

 
Table 2:  Comparison of three different meshes 

 
No. of 

elements 
Degrees of 
freedom 

Computation 
time (s) 

12684 32249 250 

63930 160982 1475 

383814 961778 6111 

 
4. Results and Discussion 
 
 Here we will discuss various properties of 
VF at the frontal (R<0) and rear interface (R>0) 
of a finite sample for the same viscosity ratio 
between the sample and the displacing fluid. 
Fingering dynamics of such finite samples have 
been shown on Fig. 1 and Fig. 2 for R = 2, -2 
respectively, which give a visualization of the 
difference between the two cases. The evolution 
of the dynamics is shown in a stationary frame 
for different time. Rear interface of the sample 
becomes unstable due to unfavorable viscosity 
contrast in the case of the positive log-mobility 
ratio (R>0). The frontal interface remains stable 
due to the favorable viscosity gradient. On the 
other hand, opposite phenomenon is observed for 
the case R<0, where the frontal interface 
becomes unstable whereas the rear interface 
remains stable. Extensive qualitative numerical 
studies have been done for such dynamics with 
positive and negative log-mobility [2, 3]. The 
numerical results for both values of R are 
compared with the simulation results obtained by 
Mishra et al. [3], using a Fourier-spectral 
method. As anticipated the similar VF pattern at 
the early times until t = 20 seconds is seen out of 
the same noise and is seen through a visual 
inspection of the Fig. 1 and Fig. 2. Our 
simulation domain in these cases is a rectangle of 
size 0.08× 0.02 mm2.  Fluid is injected with 
speed 1 mm/s.  
 



 

 

 

 

 

 

 

 

 

Figure 1. Surface plots of saturation s1  at successive 
times with U0 =1 × 10-3 m/s, R=2. From top to bottom 
t=0, 5, 10, 15, 20, 25 seconds. 
  
 
The forward finger moves faster than the 
backward finger similar to the observation of 
spectral methods [3]. Mixing length becomes 
larger in R=-2 than the case of R=2.  
 

Fig. 3 depicts the dynamics when the 
displacing fluid is injected with a speed U0 = 0.5 
mm/s. It is to be noticed that the unstable rear 
interface becomes less severe as the injection 
speed reduces here. The forward fingers [3] do 
not touch the frontal interface even at time t = 40 
seconds, while it reaches at time t = 15 seconds 
with U0 = 1 mm/s (see Fig. 1). As the displacing 
fluid invades slowly the onset time of fingering 
delayed than the larger U0 = 1 mm/s and mixing 
becomes slower, which has also been observed 
in a recent experimental paper [4].  

 

 

Figure 2. Surface plots of saturation s1  at successive 
times with U0 =1 × 10-3 m/s, R= -2. From top to 
bottom t=0, 5, 10, 15, 20, 25 seconds. 
 

Finally on Fig. 4 we see the fingering 
dynamics at a higher log-mobility ratio (R = 3). 
We observe that the fingers grow faster and the 
forward finger reaches the stable interface earlier 
compared to the case with R = 2 (Fig. 3). This 
happens due to the larger viscosity gradient 
between both miscible fluids, similar to the 
results in [2-5].  
 

5. Conclusions 
 
 We obtained the miscible VF patterns of 

a finite sample using COMSOL Multiphysics, 
which can be observed in chromatographic 
column and aquifers. The fingering instability in 
such cases is a transient phenomenon and 
broadens the length of the sample peaks. 
Fingering instability increases with increasing 



 

 

log-mobility ratio R, and the injection velocity 
U0. The classical VF phenomenon like, merging 
and tip splitting are observed through this 
COMSOL Multiphysics simulation model. The 
results are very much comparable to the existing 
experiments [4] as well as other numerical 
simulations using spectral codes [2,3,5].  All 
these simulation performed here using two-phase 
Darcy’s law (tpdl) of COMSOL Multiphysics 
4.3a, are reproducible. In future, more detail 
simulations in this kind of pattern formations 
will be performed with different parameters of 
physical interest.  
 

 

 

Figure 3. Surface plots of saturation s1  at successive 
times with U0 =5 × 10-4 m/s, R=2. From top to bottom 
t=0, 10, 20, 30, 40, 50 seconds. 
 
 
 
 
 
 

 

 

 

 

Figure 4. Surface plots of saturation s1  at successive 
times with U0 =5 × 10-4 m/s, R=3. From top to bottom 
t=0, 10, 20, 30, 40, 50 seconds. 
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