A Dual Continuum Model for Groundwater Flow in Karst Aquifers

By Roger Painter, Justin Harris, Tom Byl, Lonnie Sharpe Tennessee State University, College of Engr., 3500 John A Merritt Blvd., Nashville, TN 37209

COMSOL CONFERENCE 2014 BOSTON

Diagram of Karst Attributes

Conventional Approach to Modeling Karst

Diagram of Karst Attributes

Conventional Approach to Modeling Karst

Karst has traditionally been modeled as plug flow with axial dispersion in terms of the advection dispersion equation with constant groundwater velocity.

$$\frac{\partial C(t)}{\partial t} = D_a \frac{\partial^2 C(t)}{\partial z^2} - U \frac{\partial C(t)}{\partial z}$$

The classic solution to this equation has shortcomings with regard to its ability to predict tracer response residence times and regarding the lack of inference it makes about karst flow.

$$\frac{C}{C_0} = \frac{1}{2\sqrt{\frac{\pi\theta}{Pe}}} e^{\frac{-(1-\theta)^2}{\frac{4\pi}{Pe}}}$$

Conventional Approach to Modeling Karst

The model is based on the finite element solution of a rigorous mathematical model in terms of the Navier-Stokes and continuity equations describing conduit flow,

$$\nabla \cdot \rho(u, \nabla)u = -\nabla \cdot \left[-pI + \mu(\nabla u + (\nabla u)\rho(\nabla \cdot u)\right]$$
$$\nabla \cdot u = 0$$

and Forchheimer-corrected Brinkman equations describing the diffuse phase flow,

$$\frac{\mu}{k} = \nabla \left[-pI + \mu \left(\nabla u + (\nabla u)\rho(\nabla \cdot u) \right) - \frac{\rho \epsilon p Cf}{\sqrt{k}} u |u| \right]$$

And finally, the transient ADE describing solute concentration is coupled to the flow equations.

$$\frac{\partial c}{\partial t} = u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} + w \frac{\partial c}{\partial z} - \kappa \left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} + \frac{\partial^2 c}{\partial z^2}\right)$$

Darcy's Law vs. Forchheimer Equation

- Δ P/L = μ v / k
 - Pressure drop is proportional to fluid velocity
 - Applicable only at low flowrates

• $\Delta P/L = \mu v / k + \beta \rho v^2$

- Pressure drop is proportional to square of fluid velocity
- Applicable at realistic fracture flowrates

COMSOL Model Geometry

COMSOL Model Geometry

Dual Continuum Model for RCA NPL Site

Table 4. Spring discharge values and tracer recovery values at specific times.

t	Q	C	C×Q	txCxQ
(h)	$(m^{3} s^{-1})$	$(mg m^{-3})$	$(mg s^{-1})$	(mg)
0.00 4.00	0 00 10-1	0.00 1.00	0.00 100	0.00 1.01
$0.00 \times 10^{\circ}$	3.79×10 ⁻⁴	$0.00 \times 10^{\circ}$	$0.00 \times 10^{\circ}$	0.00 × 10 ⁴
$1.00 \times 10^{\circ}$	3.79×10^{-4}	$0.00 \times 10^{\circ}$	$0.00 \times 10^{\circ}$	$0.00 \times 10^{\circ}$
$2.00 \times 10^{\circ}$	3.79×10^{-4}	$0.00 \times 10^{\circ}$	$0.00 \times 10^{\circ}$	0.00×10^{6}
$3.00 \times 10^{\circ}$	3.79×10^{-4}	$0.00 \varkappa 10^{0}$	$0.00 imes 10^{0}$	0.00×10^{6}
$4.00 imes 10^{0}$	3.79×10^{-4}	$0.00 extsf{x} 10^{0}$	$0.00 imes 10^0$	$0.00 \varkappa 10^{6}$
$5.00 \times 10^{\circ}$	3.79×10^{-4}	5.00×10^3	$1.90 imes 10^{0}$	3.42×10^{6}
$6.00 imes 10^0$	3.79×10^{-4}	2.50×10^5	9.48×10^{1}	2.05×10^5
$7.00 imes 10^{0}$	3.79×10 ⁻⁴	3.80×10^5	1.44×10^{2}	3.63×10^5
8.00×10^{0}	3.79×10 ⁻⁴	2.00×10^5	7.58×10^{1}	2.18×10^{5}
9.00×10^{0}	3.79×10 ⁻⁴	1.25×10^5	4.74×10^{1}	1.54×10^5
$10.00 \varkappa 10^{0}$	3.79×10^{-4}	7.50×10^4	2.84×10^{1}	1.02×10^5
11.00×10^{0}	3.79×10^{-4}	5.50×10^4	2.09×10^{1}	8.28×10^5
12.00×10^{0}	3.79×10^{-4}	$4.00 $ × 10^{4}	1.52×10^{1}	6.57×10^5
13.00×10^{0}	3.79×10^{-4}	2.50×10^4	$9.48 \times 10^{\circ}$	4.44×10^{5}
14.00×10^{0}	3.79×10^{-4}	2.00×10^4	7.58×10^{0}	3.82×10^5
15.00×10^{0}	3.79×10^{-4}	1.50×10^4	5.69×10^{0}	3.07×10^5
16.00×10^{0}	3.79×10^{-4}	1.40×10^4	5.31×10^{0}	3.06×10^5
17.00×10^{0}	3.79 ×10 ⁻⁴	1.30×10^4	4.93×10^{0}	3.02×10^5
18.00×10^{0}	3.79×10^{-4}	1.20×10^4	4.55×10^{0}	2.95×10^{5}
19.00×10^{0}	3.79×10 ⁻⁴	1.10×10^4	4.17×10^{0}	2.85×10^5
20.00×10^{0}	3.79 ×10 ⁻⁴	1.00×10^4	3.79×10^{0}	2.73×10^5
21.00×10^{0}	3.79×10^{-4}	9.00×10^{3}	$3.41 \times 10^{\circ}$	2.58×10^{5}
22.00×10^{0}	3.79×10 ⁻⁴	8.00×10^3	3.03×10^{0}	2.40×10^5
23.00×10^{0}	3.79×10^{-4}	7.00×10^3	2.65×10^{0}	2.19×10^5
24.00×10^{0}	3.79×10 ⁻⁴	6.00×10^3	2.27×10^{0}	1.96 × 10 ⁵
), _n	4.85×10^2	1.55 × 10 ⁷

(source: RCA, 1992)

Dual Continuum Model for RCA NPL Site

The bimodal response of the dual continuum model accurately reflects the long upper tail and lag time of the experimental tracer response curve.

COMSOL Model Geometry

Dual Continuum Model for RCA NPL Site

The dual continuum model also provides additional inference about the nature of the karst groundwater flow.

The ADE solution models the aquifer as a 50 meter long tube with a cross-sectional area of 0.24 m² and volume of 12.0 m³.

The dual continuum model models the aquifer as a 50 meter long tube with cross sectional area of 0.24 m² and a volume of 12.0 m³. The model also infers that the 58% of the aquifer volume is open conduit and 42% of the volume consists of a porous matrix with porosity of 0.4 and hydraulic conductivity of 1.0E-3 cm²

Flow and Mass Transport Visualization

Flow and Mass Transport Visualization

Flow and Mass Transport Visualization

THANK YOU QUESTIONS?